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Minimum leaf number of cubic graphs

Definition

The minimum leaf number m{(G) of a connected graph G is the
minimum number of leaves (vertices of degree 1) of spanning trees

of G.
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Minimum leaf number of cubic graphs

Definition

The minimum leaf number m{(G) of a connected graph G is the
minimum number of leaves (vertices of degree 1) of spanning trees

of G.

e ml(G) =2 <= G is traceable
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Minimum leaf number of cubic graphs

Definition

The minimum leaf number mf(G) of a connected graph G is the
minimum number of leaves (vertices of degree 1) of spanning trees
of G.

e ml(G) =2 <= G is traceable

Theorem (Salamon, Wiener, 2008)

Wl

If G is a cubic graph with order n, then m{(G) < § +
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Minimum leaf number of cubic graphs

Definition

The minimum leaf number mf(G) of a connected graph G is the

minimum number of leaves (vertices of degree 1) of spanning trees
of G.

e ml(G) =2 <= G is traceable

Theorem (Salamon, Wiener, 2008)

If G is a cubic graph with order n, then m{(G) < § +

Wl

@ Zoeram, Yaqubi: cubic graphs with m{(G) = ¢ + %
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Minimum leaf number of cubic graphs
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Minimum leaf number of cubic graphs

Theorem (Salamon, Wiener, 2008)

If G is a cubic graph of order n, then m{(G) < 2 + %.

e Zoeram, Yaqubi: cubic graphs with m{(G) = 2 + %
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Minimum leaf number of cubic graphs

Theorem (Salamon, Wiener, 2008)

If G is a cubic graph of order n, then m{(G) < 2 + %.

e Zoeram, Yaqubi: cubic graphs with m{(G) = 2 + %

Theorem (Goedgebeur, Ozeki, Van Cleemput, Wiener, 2018)

If G is a cubic graph of order n, then m{(G) < 2 + 3.

@ this bound is sharp, examples are not 2-connected
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2-connected cubic graphs

Theorem (Goedgebeur et al.)

If G is a 2-connected cubic graph, then m{(G) < 32 ~ £%5.
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2-connected cubic graphs

Theorem (Goedgebeur et al.)

. . 13n
If G is a 2-connected cubic graph, then m{(G) < 32 ~ £%5.

If G is a 2-connected cubic graph, then m{(G) < [15].
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2-connected cubic graphs

gl=

ml(G)
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2-connected cubic graphs

5T &2

n=28, m{(G) =3
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2-connected cubic graphs

Theorem (Goedgebeur et al.)

. . 13n
If G is a 2-connected cubic graph, then m{(G) < 32 ~ £%5.

If G is a 2-connected cubic graph, then m{(G) < [15].
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2-connected cubic graphs

Theorem (Goedgebeur et al.)

. . 13n
If G is a 2-connected cubic graph, then m{(G) < 32 ~ £%5.

If G is a 2-connected cubic graph, then m{(G) < [15].

Theorem (DM, 2019+)

If G is a 2-connected cubic graph, then m{(G) < g + 1.
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Sketch of the proof

Definition

(T,r) is called a rooted tree if T is a tree, and the root r is a
vertex of T.

Definition

| A\

The depth of a vertex is its distance from the root, the depth of a
rooted tree is the sum of the depths of its vertices.
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Sketch of the proof

@ Let T be a rooted spanning tree of G such that:

@ it has the least possible number of leaves
@ given the first condition, it has the largest possible depth.
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Sketch of the proof

@ Let T be a rooted spanning tree of G such that:

@ it has the least possible number of leaves
@ given the first condition, it has the largest possible depth.

@ We will need 6 vertices of degree 2 associated with every leaf
of T (except the root).
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Sketch of the proof

@ Let T be a rooted spanning tree of G such that:

@ it has the least possible number of leaves
@ given the first condition, it has the largest possible depth.

@ We will need 6 vertices of degree 2 associated with every leaf
of T (except the root).

Proposition

If T is a spanning tree of a cubic graph, and the number of leaves
of T is £, then T has ¢ — 2 vertices of degree 3.
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@ ( —1 leaves, 6- (¢ — 1) vertices of degree 2 associated with
the leaves, ¢ — 2 vertices of degree 3
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Sketch of the proof

@ Let T be a rooted spanning tree of G such that:

@ it has the least possible number of leaves
@ given the first condition, it has the largest possible depth.

@ We will need 6 vertices of degree 2 associated with every leaf
of T (except the root).

Proposition

If T is a spanning tree of a cubic graph, and the number of leaves
of T is £, then T has ¢ — 2 vertices of degree 3.

@ ( —1 leaves, 6- (¢ — 1) vertices of degree 2 associated with
the leaves, ¢ — 2 vertices of degree 3

o /+6-({-1)+({-2)<nsol<g+1
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Vertices of degree 2
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Case 1:

@ There is a vertex of degree 3 on the path connecting the leaf ¢
andn/ninT

@ a and &’ are not adjacent

The vertices of degree 2 associated with £ are n, n’,.a, &', b and b’
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Vertices of degree 2

@ n and n’ are not leaves:
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Vertices of degree 2

@ n and n’ are ancestors of /:
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Vertices of degree 2

@ n and n’ are ancestors of /:
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Vertices of degree 2

@ nand n’ are not a parent and a child:

~
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Vertices of degree 2
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Vertices of degree 2

@ a and &’ are vertices of degree 2:

L3
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Vertices of degree 2
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Vertices of degree 2

@ b and b’ are vertices of degree 2:

LS
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Other cases
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@ This is the only case where the proof uses the 2-connectedness
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Questions, related problems

IN
—

|=
J—

If G is a 2-connected cubic graph, then m{(G)
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If G is a 2-connected cubic graph, then m{(G)

higher connectedness
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Questions, related problems

IN
—

|=
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If G is a 2-connected cubic graph, then m{(G)

higher connectedness

If G is a 3-connected cubic graph, then m¢(G) < [ + 3.
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Questions, related problems

If G is a 2-connected cubic graph, then m{(G) < [15].

higher connectedness

If G is a 3-connected cubic graph, then m¢(G) < [ + 3.

cubic 2-connected multigraphs - examples with mé(G) = ¢
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Questions, related problems

If G is a 2-connected cubic graph, then m{(G) < [15].

higher connectedness

If G is a 3-connected cubic graph, then m¢(G) < [ + 3.

cubic 2-connected multigraphs - examples with mé(G) = ¢

Theorem (Boyd, Sitters, van der Ster, Stougie, 2011)

If G is a cubic multigraph with order n, then m¢(G) < 2 + 2.
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Thank you!
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