MINIMUM LEAF NUMBER OF 2-CONNECTED CUBIC GRAPHS

Márton Dücső

Budapest University of Technology and Economics

Ghent Graph Theory Workshop 2019

4 3 6 4 3

The minimum leaf number $m\ell(G)$ of a connected graph G is the minimum number of leaves (vertices of degree 1) of spanning trees of G.

The minimum leaf number $m\ell(G)$ of a connected graph G is the minimum number of leaves (vertices of degree 1) of spanning trees of G.

•
$$m\ell(G) = 2 \iff G$$
 is traceable

The minimum leaf number $m\ell(G)$ of a connected graph G is the minimum number of leaves (vertices of degree 1) of spanning trees of G.

•
$$m\ell(G) = 2 \iff G$$
 is traceable

Theorem (Salamon, Wiener, 2008) If G is a cubic graph with order n, then $m\ell(G) \le \frac{n}{6} + \frac{4}{3}$.

The minimum leaf number $m\ell(G)$ of a connected graph G is the minimum number of leaves (vertices of degree 1) of spanning trees of G.

•
$$m\ell(G) = 2 \iff G$$
 is traceable

Theorem (Salamon, Wiener, 2008)

If G is a cubic graph with order n, then $m\ell(G) \leq \frac{n}{6} + \frac{4}{3}$.

• Zoeram, Yaqubi: cubic graphs with $m\ell(G) = \frac{n}{6} + \frac{1}{3}$

周 ト イ ヨ ト イ ヨ

Minimum leaf number of cubic graphs

 $m\ell(G) = \frac{n}{6} + \frac{1}{3}$

Minimum leaf number of cubic graphs

Theorem (Salamon, Wiener, 2008)

If G is a cubic graph of order n, then $m\ell(G) \leq \frac{n}{6} + \frac{4}{3}$.

• Zoeram, Yaqubi: cubic graphs with $m\ell(G) = \frac{n}{6} + \frac{1}{3}$

Minimum leaf number of cubic graphs

Theorem (Salamon, Wiener, 2008)

If G is a cubic graph of order n, then $m\ell(G) \leq \frac{n}{6} + \frac{4}{3}$.

• Zoeram, Yaqubi: cubic graphs with $m\ell(G) = \frac{n}{6} + \frac{1}{3}$

Theorem (Goedgebeur, Ozeki, Van Cleemput, Wiener, 2018)

If G is a cubic graph of order n, then $m\ell(G) \leq \frac{n}{6} + \frac{1}{3}$.

• this bound is sharp, examples are not 2-connected

Theorem (Goedgebeur et al.)

If G is a 2-connected cubic graph, then $m\ell(G) \leq \frac{13n}{85} \approx \frac{n}{6.54}$.

A B M A B M

э

Theorem (Goedgebeur et al.)

If G is a 2-connected cubic graph, then $m\ell(G) \leq \frac{13n}{85} \approx \frac{n}{6.54}$.

Conjecture

If G is a 2-connected cubic graph, then $m\ell(G) \leq \lceil \frac{n}{10} \rceil$.

• • = • • = •

2-connected cubic graphs

 $m\ell(G) = \frac{n}{10}$

æ

★ ∃ ► < ∃ ►</p>

2-connected cubic graphs

 $n=28, m\ell(G)=3$

æ

∃ ► < ∃ ►</p>

Theorem (Goedgebeur et al.)

If G is a 2-connected cubic graph, then $m\ell(G) \leq \frac{13n}{85} \approx \frac{n}{6.54}$.

Conjecture

If G is a 2-connected cubic graph, then $m\ell(G) \leq \lceil \frac{n}{10} \rceil$.

• • = • • = •

Theorem (Goedgebeur et al.)

If G is a 2-connected cubic graph, then $m\ell(G) \leq \frac{13n}{85} \approx \frac{n}{6.54}$.

Conjecture

If G is a 2-connected cubic graph, then $m\ell(G) \leq \lceil \frac{n}{10} \rceil$.

Theorem (DM, 2019+)

If G is a 2-connected cubic graph, then $m\ell(G) \leq \frac{n}{8} + 1$.

伺 ト イヨト イヨト

(T, r) is called a *rooted tree* if T is a tree, and the *root* r is a vertex of T.

Definition

The *depth* of a vertex is its distance from the root, the depth of a rooted tree is the sum of the depths of its vertices.

• • • • • • •

- Let T be a rooted spanning tree of G such that:
 - It has the least possible number of leaves
 - 2 given the first condition, it has the largest possible depth.

.

- Let T be a rooted spanning tree of G such that:
 - It has the least possible number of leaves
 - **2** given the first condition, it has the largest possible depth.
- We will need 6 vertices of degree 2 associated with every leaf of T (except the root).

- Let T be a rooted spanning tree of G such that:
 - It has the least possible number of leaves
 - **2** given the first condition, it has the largest possible depth.
- We will need 6 vertices of degree 2 associated with every leaf of *T* (except the root).

Proposition

If T is a spanning tree of a cubic graph, and the number of leaves of T is ℓ , then T has $\ell - 2$ vertices of degree 3.

- Let T be a rooted spanning tree of G such that:
 - It has the least possible number of leaves
 - **2** given the first condition, it has the largest possible depth.
- We will need 6 vertices of degree 2 associated with every leaf of T (except the root).

Proposition

If T is a spanning tree of a cubic graph, and the number of leaves of T is ℓ , then T has $\ell - 2$ vertices of degree 3.

• $\ell-1$ leaves, $6\cdot(\ell-1)$ vertices of degree 2 associated with the leaves, $\ell-2$ vertices of degree 3

伺下 イヨト イヨト

- Let T be a rooted spanning tree of G such that:
 - It has the least possible number of leaves
 - 2 given the first condition, it has the largest possible depth.
- We will need 6 vertices of degree 2 associated with every leaf of *T* (except the root).

Proposition

If T is a spanning tree of a cubic graph, and the number of leaves of T is ℓ , then T has $\ell - 2$ vertices of degree 3.

• $\ell-1$ leaves, $6\cdot(\ell-1)$ vertices of degree 2 associated with the leaves, $\ell-2$ vertices of degree 3

•
$$\ell + 6 \cdot (\ell - 1) + (\ell - 2) \le n$$
, so $\ell \le \frac{n}{8} + 1$.

伺下 イヨト イヨト

Case 1:

- There is a vertex of degree 3 on the path connecting the leaf ℓ and $n \ / \ n'$ in T
- a and a' are not adjacent

The vertices of degree 2 associated with ℓ are n, n', a, a', b and b'

• n and n' are not leaves:

э

• *n* and *n'* are ancestors of ℓ :

• *n* and *n'* are ancestors of ℓ :

• n and n' are not a parent and a child:

• *a* and *a*' are vertices of degree 2:

• *b* and *b*' are vertices of degree 2:

æ

• This is the only case where the proof uses the 2-connectedness

Conjecture

If G is a 2-connected cubic graph, then $m\ell(G) \leq \lceil \frac{n}{10} \rceil$.

▶ ▲ 둘 ▶ ▲ 둘 ▶

э

Conjecture

If G is a 2-connected cubic graph, then $m\ell(G) \leq \lceil \frac{n}{10} \rceil$.

higher connectedness

▶ ▲ 둘 ▶ ▲ 둘 ▶

э

Conjecture

If G is a 2-connected cubic graph, then $m\ell(G) \leq \lceil \frac{n}{10} \rceil$.

higher connectedness

Conjecture

If G is a 3-connected cubic graph, then $m\ell(G) \leq \lceil \frac{n}{16} + \frac{1}{2} \rceil$.

伺 ト イヨト イヨト

Conjecture

If G is a 2-connected cubic graph, then $m\ell(G) \leq \lceil \frac{n}{10} \rceil$.

higher connectedness

Conjecture

If G is a 3-connected cubic graph, then $m\ell(G) \leq \lceil \frac{n}{16} + \frac{1}{2} \rceil$.

cubic 2-connected multigraphs - examples with $m\ell(G) = \frac{n}{6}$

伺 ト イヨト イヨト

Conjecture

If G is a 2-connected cubic graph, then $m\ell(G) \leq \lceil \frac{n}{10} \rceil$.

higher connectedness

Conjecture

If G is a 3-connected cubic graph, then $m\ell(G) \leq \lceil \frac{n}{16} + \frac{1}{2} \rceil$.

cubic 2-connected multigraphs - examples with $m\ell(G) = \frac{n}{6}$

Theorem (Boyd, Sitters, van der Ster, Stougie, 2011)

If G is a cubic multigraph with order n, then $m\ell(G) \leq \frac{n}{6} + \frac{2}{3}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Thank you!