Complete Acyclic Colorings GGTW 2019, Ghent, Belgium

Stefan Felsner¹, Winfried Hochstättler², Kolja Knauer³ and **Raphael Steiner**¹

¹Technische Universität Berlin

²FernUniversität in Hagen

³Université Aix-Marseille

11-14 August 2019

Arboreal and Acyclic Colorings

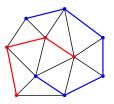
An arboreal coloring of a graph G is a partition of the vertex set into subsets inducing forests. It is complete if there is a cycle in the merge of any two color classes.

Arboreal and Acyclic Colorings

An arboreal coloring of a graph G is a partition of the vertex set into subsets inducing forests. It is complete if there is a cycle in the merge of any two color classes.

Vertex arboricity va(G)

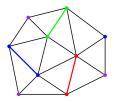
Minimum number of colors in arboreal coloring



va(G) = 2

A-vertex arboricity ava(G) Maximum number of colors in

complete arboreal coloring

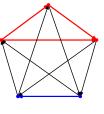


$$ava(G) = 4$$

Arboreal and Acyclic Colorings

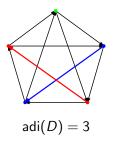
An acyclic coloring of a digraph D is a partition of the vertex set into subsets inducing acyclic digraphs. It is complete if there is a directed cycle in the merge of any two color classes.

Dichromatic number $\vec{\chi}(D)$ Minimum number of colors in acyclic coloring



 $\vec{\chi}(D) = 2$

Adichromatic number adi(*D*) Maximum number of colors in complete acyclic coloring



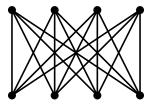
Complete Colorings

Graph Operations

Upper Bounds

Lower Bounds

Complete Bipartite Graphs



 $va(K_{n,n}) = 2$

Complete Colorings

Graph Operations

Upper Bounds

Lower Bounds

Complete Bipartite Graphs



 $\mathsf{ava}(K_{n,n}) = n$

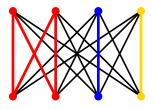
Complete Colorings

Graph Operations

Upper Bounds

Lower Bounds

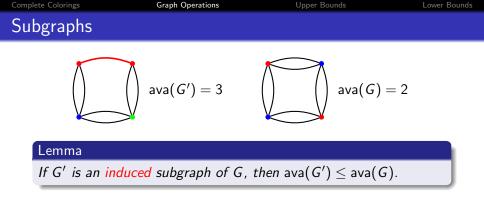
Complete Bipartite Graphs

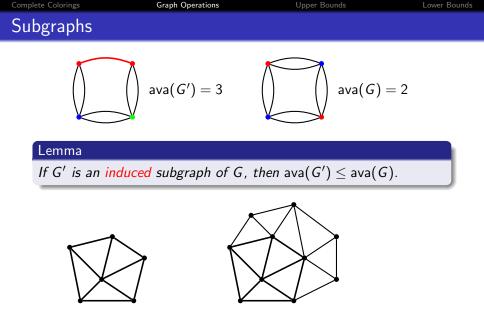


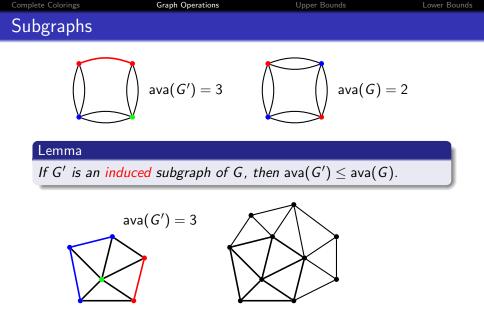
 $ava(K_{n,n}) = n$

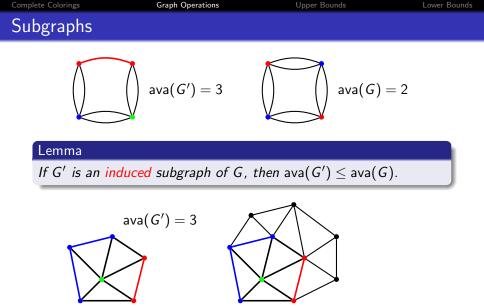
Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Subgraphs			

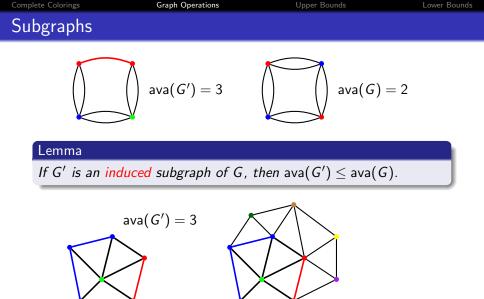
Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Subgraphs			
	ava $(G') = 3$	ava $(G) = 1$	2

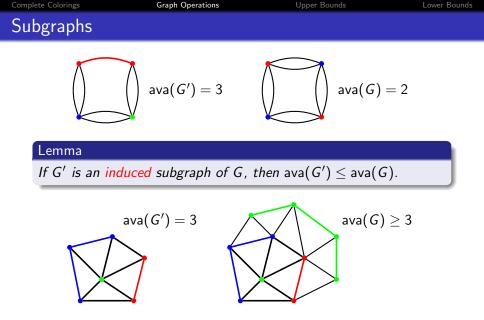


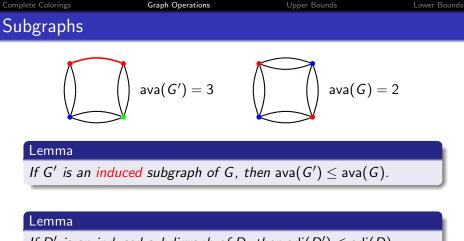








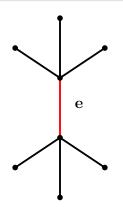




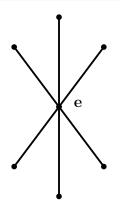
If D' is an induced subdigraph of D, then $\operatorname{adi}(D') \leq \operatorname{adi}(D)$.

Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Induced Minors ar	nd Subdivisions		

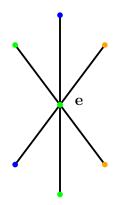
Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Induced Minors	and Subdivisions		



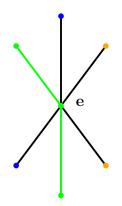
Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Induced Minc	ors and Subdivisions		



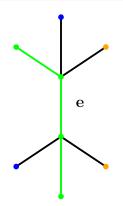
Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Induced Minors ar	nd Subdivisions		



Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Induced Minors ar	nd Subdivisions		



Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Induced Minc	ors and Subdivisions		

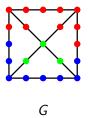


Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Induced Minor	rs and Subdivision	S	

Corollary

If H is an induced minor of G, then $ava(H) \leq ava(G)$.

Н



Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Relation to Fe	edback Vertex Set	ts	

Definition

A feedback vertex set of a graph (digraph) is a vertex set whose deletion yields a forest (acyclic digraph).

Relation to Feedback Vertex Sets

Definition

A feedback vertex set of a graph (digraph) is a vertex set whose deletion yields a forest (acyclic digraph).

Proposition

- $\operatorname{ava}(G) \leq \operatorname{fv}(G) + 1$ for any graph G.
- $\operatorname{adi}(D) \leq \operatorname{fv}(D) + 1$ for any digraph D.

Relation to Feedback Vertex Sets

Definition

A feedback vertex set of a graph (digraph) is a vertex set whose deletion yields a forest (acyclic digraph).

Proposition

- $\operatorname{ava}(G) \leq \operatorname{fv}(G) + 1$ for any graph G.
- $\operatorname{adi}(D) \leq \operatorname{fv}(D) + 1$ for any digraph D.

Proof.

In a complete arboreal/acyclic coloring, at most one colour class is disjoint from a feedback vertex set. $\hfill\square$

Relations between the Parameters

Theorem (Felsner, Hochstättler, Knauer, S. '19)

- \exists Multi-graphs with bounded ava and unbounded fv.
- \exists Simple digraphs with bounded adi and unbounded fv.
- For simple graphs, there is f such that $fv(G) \leq f(ava(G))$.
- For simple graphs, $ava(G) \sim max_D adi(D)$.

Relations between the Parameters

Theorem (Felsner, Hochstättler, Knauer, S. '19)

Let \mathcal{G} be a non-trivial minor-closed class of simple graphs.

• There is f such that for D orientation of $G \in \mathcal{G}$:

 $fv(D) \leq f(adi(D)).$

• There is $f(k) = O(k^2 \log k)$ such that for all $G \in \mathcal{G}$:

 $fv(G) \leq f(ava(G)).$

Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Degeneracy vs.	. ava		

Theorem

There is f such that for all simple graphs G:

 $\deg(G) \leq f(\operatorname{\mathsf{ava}}(G)).$

Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Degeneracy vs.	ava		

Theorem

There is f such that for all simple graphs G:

 $\deg(G) \leq f(\operatorname{ava}(G)).$

Theorem (Kühn and Osthus, 2004)

For $s \ge 1$ and every graph H there is $d(s, H) \ge 1$ such that every G with $\delta(G) \ge d(s, H)$ contains $K_{s,s}$ as a subgraph or an induced subdivision of H.

Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Degeneracy vs.	ava		

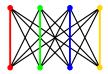
Theorem

There is f such that for all simple graphs G:

 $\deg(G) \leq f(\operatorname{ava}(G)).$

Proof.

If $\deg(G) \ge d(s, K_{s,s})$, then $\operatorname{ava}(G) \ge s$.



Proof by contradiction: Assume \exists sequence G_1, G_2, G_3, \ldots such that $fv(G_i) \rightarrow \infty$ and $ava(G_i)$ bounded.

Proof by contradiction: Assume \exists sequence G_1, G_2, G_3, \ldots such that $fv(G_i) \rightarrow \infty$ and $ava(G_i)$ bounded.

Theorem (Erdős and Pósa '65)

There is $f(k) = O(k \log k)$ such that for all graphs:

 $cp(G) \leq fv(G) \leq f(cp(G)).$

Proof by contradiction: Assume \exists sequence G_1, G_2, G_3, \ldots such that $fv(G_i) \rightarrow \infty$ and $ava(G_i)$ bounded.

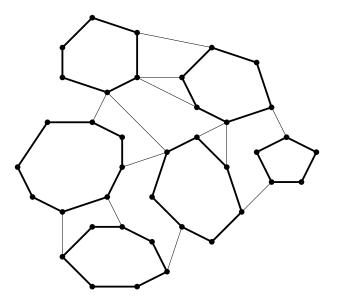
Theorem (Erdős and Pósa '65)

There is $f(k) = O(k \log k)$ such that for all graphs:

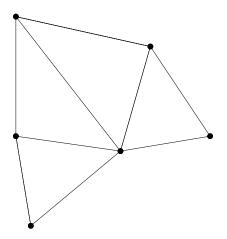
 $cp(G) \leq fv(G) \leq f(cp(G)).$

Therefore: $cp(G_i) \rightarrow \infty$, and $deg(G_i) \le d$.

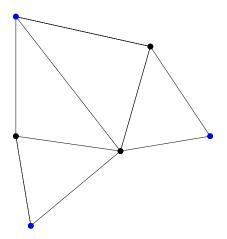
 $\begin{array}{c|c} \mbox{Complete Colorings} & \mbox{Graph Operations} & \mbox{Upper Bounds} & \mbox{Lower Bounds} \\ \mbox{fv}(G) \leq f(\mbox{ava}(G)) \end{array}$



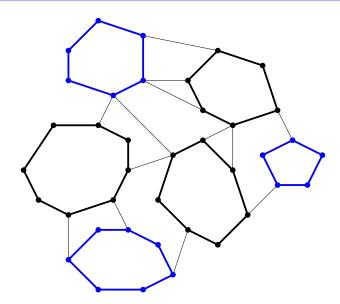
Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
$fv(G) \leq f(ava(G))$	5))		



Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
$fv(G) \leq f(ava($	G))		

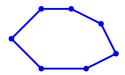


 $\begin{array}{c|c} \mbox{Complete Colorings} & \mbox{Graph Operations} & \mbox{Upper Bounds} & \mbox{Lower Bounds} \\ \mbox{fv}(G) \leq f(\mbox{ava}(G)) \end{array}$



 $\begin{array}{c|c} \hline complete Colorings & Graph Operations & Upper Bounds \\ \hline fv(G) \leq f(ava(G)) \end{array}$

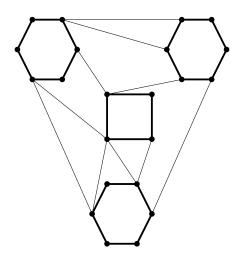
 \bigcirc



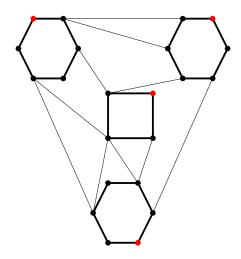
 $\begin{array}{c|c} \mbox{Complete Colorings} & \mbox{Graph Operations} & \mbox{Upper Bounds} & \mbox{Lower Bounds} \\ \hline fv(G) \leq f(ava(G)) \end{array}$

 \bigcirc

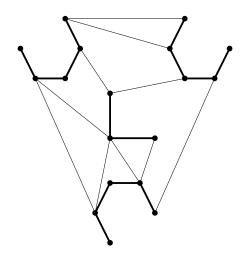
Complete ColoringsGraph OperationsUpper BoundsLower Bounds $fv(G) \leq f(ava(G))$



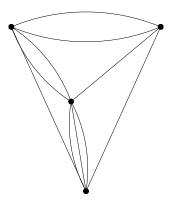
Complete ColoringsGraph OperationsUpper BoundsLower Bounds $fv(G) \leq f(ava(G))$



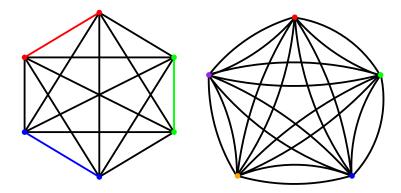
Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
$fv(G) \leq f(ava)$	a(G))		



Complete ColoringsGraph OperationsUpper BoundsLower Bounds $fv(G) \leq f(ava(G))$



 $\begin{array}{c|c} \mbox{Complete Colorings} & \mbox{Graph Operations} & \mbox{Upper Bounds} & \mbox{Lower Bounds} \\ \hline fv(G) \leq f(ava(G)) \end{array}$



Graph Operations

Upper Bounds

Lower Bounds

Thank you.

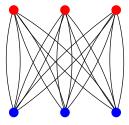
Raphael Steiner Complete Acyclic Colorings

Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
$fv(G) \leq f(ava(G))$			

- k: Number of short cycles.
- L: Maximum length of short cycle.
- *d*: Upper bound for degeneracy.
- N: Number of vertices in short cycles.

 $\binom{k}{2} \leq$ Number of edges in induced subgraph $\leq dN \leq dL \cdot k$

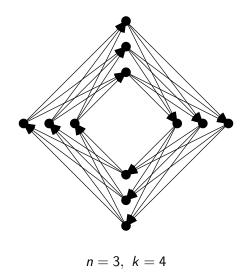
Multigraphs



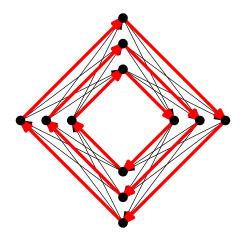
ava = 2, fv =
$$n$$

Upper Bound

Simple digraphs



Simple digraphs



 $\mathsf{adi} \leq k, \ \mathsf{fv} = n$

Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Relationship o	f ava and adi		

Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Relationship of	ava and adi		

$\mathsf{adi}(D) \leq \mathsf{fv}(D) + 1 \leq \mathsf{fv}(G) + 1 \leq f(\mathsf{ava}(G)) + 1.$

Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Relationship o	f ava and adi		

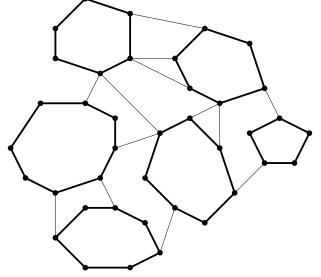
 $\max_{D} \operatorname{adi}(D) \leq g(\operatorname{ava}(G)).$

Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Relationship o	f ava and adi		

$\operatorname{ava}(G) \leq h(\max_{D} \operatorname{adi}(D)))?$

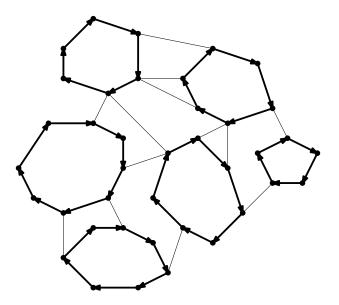
Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Relationship o	f ava and adi		

•



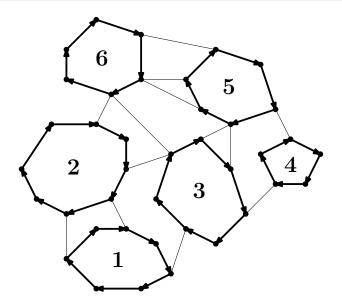
Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Deletionality	for a state of the set		

Relationship of ava and adi



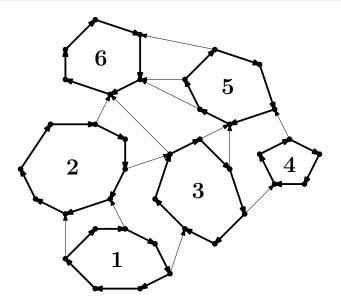
Complete Colorin	igs		Graph Operations	Upper Bounds	Lower Bounds
D L	1 A 4	c	1.		

Relationship of ava and adi



Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
	1.1.1		

Relationship of ava and adi



Complete Colorings	Graph Operations	Upper Bounds	Lower Bounds
Relationship of a	ava and adi		

