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Maximum Weight Stable Set

Problem
Given a graph G and w : V (G)→ R≥0, compute a maximum weight
stable set (MWSS) of G.

Theorem
For every ε > 0, it is NP-hard to approximate maximum stable set
within a factor of n1−ε.
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Bipartite Graphs

Theorem
MWSS can be solved on bipartite graphs in polynomial time.

max
∑

v∈V (G)

w(v)xv

s.t. xu + xv 6 1 ∀uv ∈ E(G)
x > 0
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s.t. Mx 6 1
x > 0

If G is bipartite, then M is a totally unimodular matrix.
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Integer Programming

Conjecture

Fix k ∈ N. Integer Linear Programming can be solved in polynomial
time when all subdeterminants of the constraint matrix are in
{−k, . . . , k}.

Theorem (Artmann, Weismantel, Zenklusen ’17)

True for k = 2. Bimodular Integer Programming can be solved in
(strongly) polynomial time.

Open for k ≥ 3.
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Odd Cycle Packing Number

M =M(G) edge-vertex incidence matrix of graph G

M =



1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1
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0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 1
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Odd Cycle Packing Number

Observation

max |sub-determinant of M(G)| = 2OCP(G)

Corollary

MWSS can be solved in polynomial time in graphs without two
vertex-disjoint odd cycles.

Conjecture

Fix k ∈ N. MWSS can be solved in polynomial time in graphs without
k vertex-disjoint odd cycles.
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Polynomial Time Approximation Schemes

Theorem (Bock, Faenza, Moldenhauer, Ruiz-Vargas ’14)

For every fixed k ∈ N, MWSS on graphs with OCP(G) 6 k has a
PTAS.

Theorem (Tazari ’10)

For every fixed k ∈ N, MWSS and Minimum Vertex Cover on graphs
with OCP(G) 6 k has a PTAS.
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Our Main Result

Theorem (CFHJW ’19)

There exists a function f : N2 → N such that MWSS on graphs with
OCP(G) 6 k and Euler genus 6 g can be solved in nO(f(k,g)) + nO(g2)

time.
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OCP = 1 Graphs

Theorem (Lovász)

Let G be an internally 4-connected graph. Then OCP(G) 6 1 iff one
of the following holds:

I |G| 6 5,
I G− {x} is bipartite for some x ∈ V (G),
I G− {e1, e2, e3} is bipartite for some 3-cycle {e1, e2, e3} ⊆ E(G),
I G has an even face embedding in the projective plane.



Parity-consistent Embeddings

Definition
Let G be a graph embedded in a surface S. A cycle of G is 1-sided if it
has a neighborhood that is a Möbius strip, and 2-sided if it has a
neighborhood that is a cylinder.
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An Erdős-Pósa Theorem for 2-sided Odd Cycles

Theorem (CFHJW ’19)

Let S be a surface with Euler genus g. ∀ OCP 6 k graphs G
embedded in S, ∃ set X of f(k, g) nodes that hits all the 2-sided odd
cycles.

Theorem (Reed ’99, Kawarabayashi and Nakamoto ’07)

∀ OCP 6 k graphs G embedded in an orientable surface S with Euler
genus g, ∃ set X of f̃(k, g) nodes that G−X is bipartite.
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1 if v ∈ S
0 otherwise
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Minimum Cost Homologous Circulation

max
∑

v∈V (G)

w(v)xv

s.t. Mx 6 1
x > 0
x ∈ ZV (G)

≡

min
∑

e∈E(G)

c(e)ye

s.t. y circulation in G∗

y homologous to 1
y > 0
y ∈ ZE(G)

where c ∈ RE(G)
+ is such that c(δ(v)) = w(v) for all v ∈ V (G)
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Homology

Definition
Two integer circulations y, y′ in G∗ are homologous if y − y′ is an
integer combination of facial circulations.
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Minimum Cost Homologous Circulation

Theorem (Chambers, Erickson, Nayyeri ’10)

Given an undirected graph G embedded on an orientable surface of
Euler genus g, a cost function c : E(G)→ R, and a circulation
θ : E(G)→ R, a min-cost circulation R-homologous to θ can be
computed in time gO(g)n3/2.

Theorem (Malnič and Mohar ’92)

Suppose G is embedded in a surface S with Euler genus g > 1. If C1,
. . . , C` are vertex-disjoint directed cycles in G whose homology
classes are mutually distinct, then ` 6 6g.
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Summary

Theorem (CFHJW ’19)

There exists a function f : N2 → N such that MWSS on graphs with
OCP(G) 6 k and Euler genus 6 g can be solved in nO(f(k,g)) + nO(g2)

time.
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