The Stable Set Problem in Graphs with Bounded Genus and Bounded Odd Cycle Packing Number

<u>6</u>-

Samuel Fiorini (ULB) joint with Michele Conforti, Tony Huyhn, Gwenael Joret, and Stefan Welt

Problem

Given a graph G and $w: V(G) \to \mathbb{R}_{\geq 0}$, compute a maximum weight stable set (**MWSS**) of G.

Problem

Given a graph G and $w: V(G) \to \mathbb{R}_{\geq 0}$, compute a maximum weight stable set (**MWSS**) of G.

Theorem

For every $\epsilon > 0$, it is NP-hard to approximate maximum stable set within a factor of $n^{1-\epsilon}$.

Theorem

MWSS can be solved on bipartite graphs in polynomial time.

Theorem

MWSS can be solved on bipartite graphs in polynomial time.

$$\begin{array}{lll} \max & \sum_{v \in V(G)} w(v) x_v & \max & \sum_{v \in V(G)} w(v) x_v \\ \text{s.t.} & x_u + x_v \leqslant 1 \quad \forall uv \in E(G) & \text{s.t.} & Mx \leqslant \mathbf{1} \\ & x \geqslant \mathbf{0} & & x \geqslant \mathbf{0} \end{array}$$

Theorem

MWSS can be solved on bipartite graphs in polynomial time.

$$\begin{array}{lll} \max & \sum_{v \in V(G)} w(v) x_v & & \max & \sum_{v \in V(G)} w(v) x_v \\ \mathrm{s.t.} & x_u + x_v \leqslant 1 \quad \forall uv \in E(G) & & \mathrm{s.t.} & Mx \leqslant \mathbf{1} \\ & & x \geqslant \mathbf{0} & & & x \geqslant \mathbf{0} \end{array}$$

If G is **bipartite**, then M is a **totally unimodular** matrix.

Conjecture

Fix $k \in \mathbb{N}$. Integer Linear Programming can be solved in polynomial time when all subdeterminants of the constraint matrix are in $\{-k, \ldots, k\}$.

Conjecture

Fix $k \in \mathbb{N}$. Integer Linear Programming can be solved in polynomial time when all subdeterminants of the constraint matrix are in $\{-k, \ldots, k\}$.

Theorem (Artmann, Weismantel, Zenklusen '17)

True for k = 2. Bimodular Integer Programming can be solved in (strongly) polynomial time.

Conjecture

Fix $k \in \mathbb{N}$. Integer Linear Programming can be solved in polynomial time when all subdeterminants of the constraint matrix are in $\{-k, \ldots, k\}$.

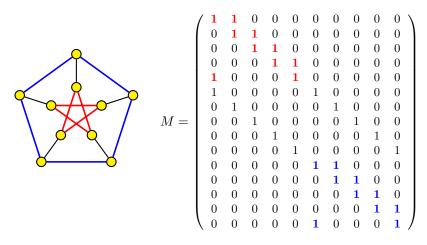
Theorem (Artmann, Weismantel, Zenklusen '17)

True for k = 2. Bimodular Integer Programming can be solved in (strongly) polynomial time.

Open for $k \geq 3$.

M = M(G) edge-vertex incidence matrix of graph G

M = M(G) edge-vertex incidence matrix of graph G



Observation

$$\max |sub-determinant of M(G)| = 2^{\mathsf{OCP}(G)}$$

Observation

$$\max |sub-determinant of M(G)| = 2^{\mathsf{OCP}(G)}$$

Corollary

MWSS can be solved in polynomial time in graphs without two vertex-disjoint odd cycles.

Observation

 $\max |sub-determinant of M(G)| = 2^{\mathsf{OCP}(G)}$

Corollary

MWSS can be solved in polynomial time in graphs without two vertex-disjoint odd cycles.

Conjecture

Fix $k \in \mathbb{N}$. **MWSS** can be solved in polynomial time in graphs without k vertex-disjoint odd cycles.

Theorem (Bock, Faenza, Moldenhauer, Ruiz-Vargas '14)

For every fixed $k \in \mathbb{N}$, **MWSS** on graphs with $OCP(G) \leq k$ has a PTAS.

Theorem (Bock, Faenza, Moldenhauer, Ruiz-Vargas '14)

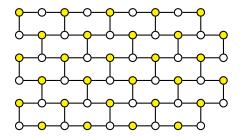
For every fixed $k \in \mathbb{N}$, **MWSS** on graphs with $OCP(G) \leq k$ has a PTAS.

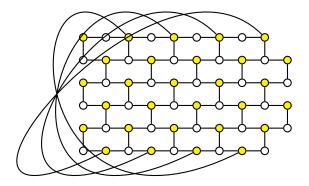
Theorem (Tazari '10)

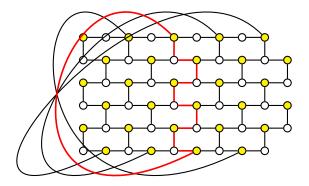
For every fixed $k \in \mathbb{N}$, **MWSS** and Minimum Vertex Cover on graphs with $OCP(G) \leq k$ has a PTAS.

Theorem (CFHJW '19)

There exists a function $f : \mathbb{N}^2 \to \mathbb{N}$ such that **MWSS** on graphs with $OCP(G) \leq k$ and Euler genus $\leq g$ can be solved in $n^{O(f(k,g))} + n^{O(g^2)}$ time.





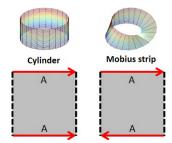


Theorem (Lovász)

Let *G* be an internally 4-connected graph. Then $OCP(G) \leq 1$ iff one of the following holds:

- $|G| \leqslant 5$,
- $G \{x\}$ is bipartite for some $x \in V(G)$,
- ▶ $G \{e_1, e_2, e_3\}$ is bipartite for some 3-cycle $\{e_1, e_2, e_3\} \subseteq E(G)$,
- G has an even face embedding in the projective plane.

Let *G* be a graph embedded in a surface S. A cycle of *G* is 1-*sided* if it has a neighborhood that is a **Möbius strip**, and 2-*sided* if it has a neighborhood that is a **cylinder**.



The embedding of a graph G in a surface S is **parity-consistent** if every odd cycle in G is 1-sided.

The embedding of a graph G in a surface S is **parity-consistent** if every odd cycle in G is 1-sided.

Lemma

If $G \hookrightarrow \mathbb{S}$ is parity-consistent, then $OCP(G) \leq Euler genus(\mathbb{S})$.

Theorem (CFHJW '19)

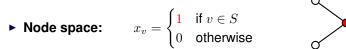
Let S be a surface with Euler genus g. $\forall \text{ OCP} \leq k$ graphs G embedded in S, \exists set X of f(k, g) nodes that **hits all the** 2-sided odd cycles.

Theorem (CFHJW '19)

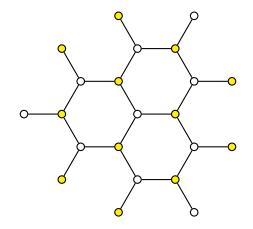
Let S be a surface with Euler genus g. $\forall \text{ OCP} \leq k$ graphs G embedded in S, \exists set X of f(k, g) nodes that hits all the 2-sided odd cycles.

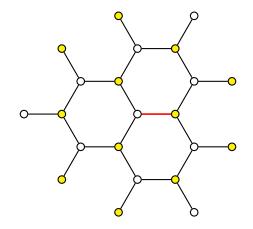
Theorem (Reed '99, Kawarabayashi and Nakamoto '07)

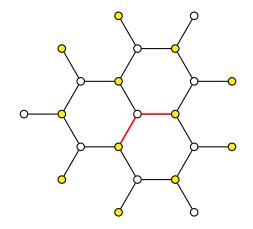
 $\forall \text{ OCP} \leq k \text{ graphs } G \text{ embedded in an orientable surface } \mathbb{S} \text{ with Euler genus } g, \exists \text{ set } X \text{ of } \tilde{f}(k,g) \text{ nodes that } G - X \text{ is bipartite.}$

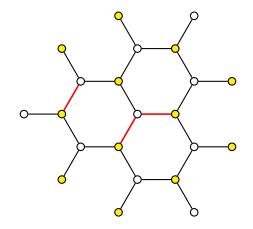


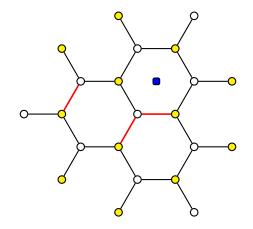
► Node space:
$$x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{otherwise} \end{cases}$$
► Slack space: $y_{uv} = \begin{cases} 1 & \text{if } u, v \notin S \\ 0 & \text{otherwise} \end{cases}$

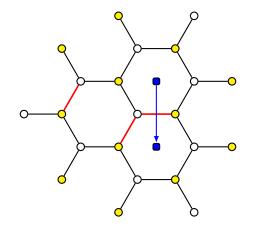


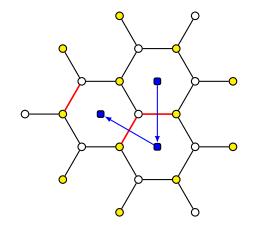


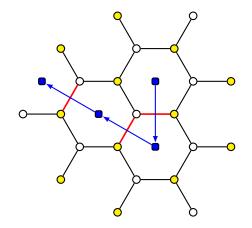












Minimum Cost Homologous Circulation

$$\begin{array}{ll} \max & \sum_{v \in V(G)} w(v) x_v \\ \text{s.t.} & Mx \leqslant \mathbf{1} & \equiv \\ & x \geqslant \mathbf{0} \\ & x \in \mathbb{Z}^{V(G)} \end{array}$$

min

 $\sum c(e)y_e$ $e \in E(G)$ s.t. y circulation in G^* y homologous to 1 $y \ge \mathbf{0}$ $y \in \mathbb{Z}^{E(G)}$

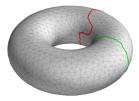
Minimum Cost Homologous Circulation

$$\begin{array}{lll} \max & \sum_{v \in V(G)} w(v) x_v & \min & \sum_{e \in E(G)} c(e) y_e \\ \text{s.t.} & Mx \leqslant \mathbf{1} & \equiv & \text{s.t.} & y \text{ circulation in } G^* \\ & x \geqslant \mathbf{0} & & y \geqslant \mathbf{0} \\ & x \in \mathbb{Z}^{V(G)} & & y \notin \mathbb{Z}^{E(G)} \end{array}$$

where $c \in \mathbb{R}^{E(G)}_+$ is such that $c(\delta(v)) = w(v)$ for all $v \in V(G)$

Two integer circulations y, y' in G^* are *homologous* if y - y' is an integer combination of **facial** circulations.

Two integer circulations y, y' in G^* are *homologous* if y - y' is an integer combination of **facial** circulations.



Theorem (Chambers, Erickson, Nayyeri '10)

Given an undirected graph G embedded on an orientable surface of Euler genus g, a cost function $c : E(G) \to \mathbb{R}$, and a circulation $\theta : E(G) \to \mathbb{R}$, a min-cost circulation \mathbb{R} -homologous to θ can be computed in time $g^{O(g)}n^{3/2}$.

Theorem (Chambers, Erickson, Nayyeri '10)

Given an undirected graph G embedded on an orientable surface of Euler genus g, a cost function $c : E(G) \to \mathbb{R}$, and a circulation $\theta : E(G) \to \mathbb{R}$, a min-cost circulation \mathbb{R} -homologous to θ can be computed in time $g^{O(g)}n^{3/2}$.

Theorem (Malnič and Mohar '92)

Suppose *G* is embedded in a surface S with Euler genus $g \ge 1$. If C_1 , ..., C_ℓ are vertex-disjoint directed cycles in *G* whose homology classes are mutually distinct, then $\ell \le 6g$.

Theorem (CFHJW '19)

There exists a function $f : \mathbb{N}^2 \to \mathbb{N}$ such that **MWSS** on graphs with $OCP(G) \leq k$ and Euler genus $\leq g$ can be solved in $n^{O(f(k,g))} + n^{O(g^2)}$ time.

Theorem (CFHJW '19)

There exists a function $f : \mathbb{N}^2 \to \mathbb{N}$ such that **MWSS** on graphs with $OCP(G) \leq k$ and Euler genus $\leq g$ can be solved in $n^{O(f(k,g))} + n^{O(g^2)}$ time.

Thank you!