## The Stable Set Problem in Graphs with Bounded Genus and Bounded Odd Cycle Packing Number



## Maximum Weight Stable Set

## Problem

Given a graph $G$ and $w: V(G) \rightarrow \mathbb{R}_{\geq 0}$, compute a maximum weight stable set (MWSS) of $G$.

## Maximum Weight Stable Set

## Problem

Given a graph $G$ and $w: V(G) \rightarrow \mathbb{R}_{\geq 0}$, compute a maximum weight stable set (MWSS) of $G$.

## Theorem

For every $\epsilon>0$, it is NP-hard to approximate maximum stable set within a factor of $n^{1-\epsilon}$.

## Bipartite Graphs

## Theorem

MWSS can be solved on bipartite graphs in polynomial time.

## Bipartite Graphs

## Theorem

MWSS can be solved on bipartite graphs in polynomial time.

$$
\begin{array}{ll}
\max & \sum_{v \in V(G)} w(v) x_{v} \\
& \max \\
\text { s.t. } & x_{u}+x_{v} \leqslant 1 \quad \forall u v \in E(G)= \\
& x \geqslant \mathbf{0}
\end{array} \quad \text { s.t. } \begin{aligned}
& v \in V(v) x_{v} \\
& \\
& \\
&
\end{aligned}
$$

## Bipartite Graphs

## Theorem

MWSS can be solved on bipartite graphs in polynomial time.

$$
\begin{array}{llll}
\max & \sum_{v \in V(G)} w(v) x_{v} & \max & \sum_{v \in V(G)} w(v) x_{v} \\
\text { s.t. } & x_{u}+x_{v} \leqslant 1 \quad \forall u v \in E(G)= & \text { s.t. } & M x \leqslant \mathbf{1} \\
& x \geqslant \mathbf{0} & & x \geqslant \mathbf{0}
\end{array}
$$

If $G$ is bipartite, then $M$ is a totally unimodular matrix.

## Integer Programming

## Conjecture

Fix $k \in \mathbb{N}$. Integer Linear Programming can be solved in polynomial time when all subdeterminants of the constraint matrix are in
$\{-k, \ldots, k\}$.

## Integer Programming

## Conjecture

Fix $k \in \mathbb{N}$. Integer Linear Programming can be solved in polynomial time when all subdeterminants of the constraint matrix are in $\{-k, \ldots, k\}$.

## Theorem (Artmann, Weismantel, Zenklusen '17)

True for $k=2$. Bimodular Integer Programming can be solved in (strongly) polynomial time.

## Integer Programming

## Conjecture

Fix $k \in \mathbb{N}$. Integer Linear Programming can be solved in polynomial time when all subdeterminants of the constraint matrix are in $\{-k, \ldots, k\}$.

## Theorem (Artmann, Weismantel, Zenklusen '17)

True for $k=2$. Bimodular Integer Programming can be solved in (strongly) polynomial time.

Open for $k \geq 3$.

## Odd Cycle Packing Number

$M=M(G)$ edge-vertex incidence matrix of graph $G$

## Odd Cycle Packing Number

$M=M(G)$ edge-vertex incidence matrix of graph $G$


## Odd Cycle Packing Number

## Observation

$$
\max \mid \text { sub-determinant of } M(G) \mid=2^{\mathrm{OCP}(G)}
$$

## Odd Cycle Packing Number

## Observation

$\max \mid$ sub-determinant of $M(G) \mid=2^{\mathrm{OCP}(G)}$

## Corollary

MWSS can be solved in polynomial time in graphs without two vertex-disjoint odd cycles.

## Odd Cycle Packing Number

## Observation

$$
\max \mid \text { sub-determinant of } M(G) \mid=2^{\mathrm{OCP}(G)}
$$

## Corollary

MWSS can be solved in polynomial time in graphs without two vertex-disjoint odd cycles.

## Conjecture

Fix $k \in \mathbb{N}$. MWSS can be solved in polynomial time in graphs without $k$ vertex-disjoint odd cycles.

## Polynomial Time Approximation Schemes

Theorem (Bock, Faenza, Moldenhauer, Ruiz-Vargas '14)
For every fixed $k \in \mathbb{N}$, MWSS on graphs with $\mathrm{OCP}(G) \leqslant k$ has a PTAS.

## Polynomial Time Approximation Schemes

Theorem (Bock, Faenza, Moldenhauer, Ruiz-Vargas '14)
For every fixed $k \in \mathbb{N}$, MWSS on graphs with $\operatorname{OCP}(G) \leqslant k$ has a PTAS.

Theorem (Tazari '10)
For every fixed $k \in \mathbb{N}$, MWSS and Minimum Vertex Cover on graphs with $\operatorname{OCP}(G) \leqslant k$ has a PTAS.

## Our Main Result

## Theorem (CFHJW '19)

There exists a function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ such that MWSS on graphs with $\operatorname{OCP}(G) \leqslant k$ and Euler genus $\leqslant g$ can be solved in $n^{O(f(k, g))}+n^{O\left(g^{2}\right)}$ time.

## Escher Walls

## Observation

If $\exists$ small $X \subseteq V(G)$ such that $G-X$ is bipartite, then MWSS is easy

## Escher Walls

## Observation

If $\exists$ small $X \subseteq V(G)$ such that $G-X$ is bipartite, then MWSS is easy


## Escher Walls

## Observation

If $\exists$ small $X \subseteq V(G)$ such that $G-X$ is bipartite, then MWSS is easy


## Escher Walls

## Observation

If $\exists$ small $X \subseteq V(G)$ such that $G-X$ is bipartite, then MWSS is easy


## OCP = 1 Graphs

## Theorem (Lovász)

Let $G$ be an internally 4-connected graph. Then $\operatorname{OCP}(G) \leqslant 1$ iff one of the following holds:

- $|G| \leqslant 5$,
- $G-\{x\}$ is bipartite for some $x \in V(G)$,
- $G-\left\{e_{1}, e_{2}, e_{3}\right\}$ is bipartite for some 3 -cycle $\left\{e_{1}, e_{2}, e_{3}\right\} \subseteq E(G)$,
- $G$ has an even face embedding in the projective plane.


## Parity-consistent Embeddings

## Definition

Let $G$ be a graph embedded in a surface $\mathbb{S}$. A cycle of $G$ is 1 -sided if it has a neighborhood that is a Möbius strip, and 2-sided if it has a neighborhood that is a cylinder.



Mobius strip



## Parity-consistent Embeddings

## Definition

The embedding of a graph $G$ in a surface $\mathbb{S}$ is parity-consistent if every odd cycle in $G$ is 1 -sided.

## Parity-consistent Embeddings

## Definition

The embedding of a graph $G$ in a surface $\mathbb{S}$ is parity-consistent if every odd cycle in $G$ is 1 -sided.

## Lemma

If $G \hookrightarrow \mathbb{S}$ is parity-consistent, then $\operatorname{OCP}(G) \leqslant$ Euler genus $(\mathbb{S})$.

## An Erdős-Pósa Theorem for 2-sided Odd Cycles

## Theorem (CFHJW '19)

Let $\mathbb{S}$ be a surface with Euler genus $g . \forall \mathrm{OCP} \leqslant k$ graphs $G$ embedded in $\mathbb{S}, \exists$ set $X$ of $f(k, g)$ nodes that hits all the 2 -sided odd cycles.

## An Erdős-Pósa Theorem for 2-sided Odd Cycles

## Theorem (CFHJW '19)

Let $\mathbb{S}$ be a surface with Euler genus $g . \forall \mathrm{OCP} \leqslant k$ graphs $G$ embedded in $\mathbb{S}$, $\exists$ set $X$ of $f(k, g)$ nodes that hits all the 2 -sided odd cycles.

Theorem (Reed '99, Kawarabayashi and Nakamoto '07)
$\forall \mathrm{OCP} \leqslant k$ graphs $G_{\tilde{\sim}}$ embedded in an orientable surface $\mathbb{S}$ with Euler genus $g, \exists$ set $X$ of $\tilde{f}(k, g)$ nodes that $G-X$ is bipartite.

## Slack Space

- Node space: $\quad x_{v}= \begin{cases}1 & \text { if } v \in S \\ 0 & \text { otherwise }\end{cases}$



## Slack Space

- Node space: $\quad x_{v}= \begin{cases}1 & \text { if } v \in S \\ 0 & \text { otherwise }\end{cases}$

- Slack space: $\quad y_{u v}= \begin{cases}1 & \text { if } u, v \notin S \\ 0 & \text { otherwise }\end{cases}$



## Slack Space



## Minimum Cost Homologous Circulation

$$
\begin{array}{llll}
\max & \sum w(v) x_{v} & & \min \\
& \sum_{e \in V(G)} c(e) y_{e} \\
\text { s.t. } & M x \leqslant \mathbf{1} & \equiv & \text { s.t. } \\
& x \geqslant \mathbf{0} & y \text { circulation in } G^{*} \\
& x \in \mathbb{Z}^{V(G)} & & y \text { homologous to } \mathbf{1} \\
& & & y \geqslant \mathbf{0} \\
& & y \in \mathbb{Z}^{E(G)}
\end{array}
$$

## Minimum Cost Homologous Circulation

$$
\begin{array}{llll}
\max & \sum_{v \in V(G)} w(v) x_{v} & & \min \\
& \sum_{e \in E(G)} c(e) y_{e} \\
\text { s.t. } & M x \leqslant \mathbf{1} & \equiv & \text { s.t. } \\
& x \geqslant \mathbf{0} \text { circulation in } G^{*} \\
& x \in \mathbb{Z}^{V(G)} & & y \text { homologous to } \mathbf{1} \\
& & y \geqslant \mathbf{0} \\
& & y \in \mathbb{Z}^{E(G)}
\end{array}
$$

where $c \in \mathbb{R}_{+}^{E(G)}$ is such that $c(\delta(v))=w(v)$ for all $v \in V(G)$

## Homology

## Definition

Two integer circulations $y, y^{\prime}$ in $G^{*}$ are homologous if $y-y^{\prime}$ is an integer combination of facial circulations.

## Homology

## Definition

Two integer circulations $y, y^{\prime}$ in $G^{*}$ are homologous if $y-y^{\prime}$ is an integer combination of facial circulations.


## Minimum Cost Homologous Circulation

## Theorem (Chambers, Erickson, Nayyeri '10)

Given an undirected graph $G$ embedded on an orientable surface of Euler genus $g$, a cost function $c: E(G) \rightarrow \mathbb{R}$, and a circulation $\theta: E(G) \rightarrow \mathbb{R}$, a min-cost circulation $\mathbb{R}$-homologous to $\theta$ can be computed in time $g^{O(g)} n^{3 / 2}$.

## Minimum Cost Homologous Circulation

## Theorem (Chambers, Erickson, Nayyeri '10)

Given an undirected graph $G$ embedded on an orientable surface of Euler genus $g$, a cost function $c: E(G) \rightarrow \mathbb{R}$, and a circulation $\theta: E(G) \rightarrow \mathbb{R}$, a min-cost circulation $\mathbb{R}$-homologous to $\theta$ can be computed in time $g^{O(g)} n^{3 / 2}$.

Theorem (Malnič and Mohar '92)
Suppose $G$ is embedded in a surface $\mathbb{S}$ with Euler genus $g \geqslant 1$. If $C_{1}$, $\ldots, C_{\ell}$ are vertex-disjoint directed cycles in $G$ whose homology classes are mutually distinct, then $\ell \leqslant 6 \mathrm{~g}$.

## Summary

## Theorem (CFHJW '19)

There exists a function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ such that MWSS on graphs with $\mathrm{OCP}(G) \leqslant k$ and Euler genus $\leqslant g$ can be solved in $n^{O(f(k, g))}+n^{O\left(g^{2}\right)}$ time.

## Summary

## Theorem (CFHJW '19)

There exists a function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ such that MWSS on graphs with $\operatorname{OCP}(G) \leqslant k$ and Euler genus $\leqslant g$ can be solved in $n^{O(f(k, g))}+n^{O\left(g^{2}\right)}$ time.

## Thank you!

