3-coloring of claw-free graphs

Mária Maceková (joint work with Frédéric Maffray)

Institute of Mathematics, Pavol Jozef Šafárik University, Košice, Slovakia

Ghent Graph Theory Workshop

Mária Maceková (UPJŠ, Košice, Slovakia)

3-coloring of claw-free graphs

k-coloring of graph *G* - a mapping $f : V(G) \rightarrow \{1, ..., k\}$ s.t. $\forall uv \in E(G) : f(u) \neq f(v)$

 $\chi(G)$ - chromatic number of G

oloring problems:

COLORING

Input: graph $G, k \in \mathbb{N}$ Question: Is G k-colorable?

k-COLORING

Input: graph G Question: Is G k-colorable?

- COLORING is NP-complete problem (even 3-COLORING is NP-hard)

- a graph G is H-free if it does not contain H as an induced subgraph

- a graph G is H-free if it does not contain H as an induced subgraph
- Kráľ, Kratochvíl, Tuza, Woeginger:

3-COLORING is NP-complete for graphs of girth at least g for any fixed $g \ge 3$

- a graph G is H-free if it does not contain H as an induced subgraph
- Kráľ, Kratochvíl, Tuza, Woeginger:

3-COLORING is NP-complete for graphs of girth at least g for any fixed $g \ge 3$

- Emden-Weinert, Hougardy, Kreuter:

for any $k \ge 3$, *k*-COLORING is NP-complete for the class of *H*-free graphs whenever *H* contains a cycle

- a graph G is H-free if it does not contain H as an induced subgraph
- Kráľ, Kratochvíl, Tuza, Woeginger:

3-COLORING is NP-complete for graphs of girth at least g for any fixed $g \ge 3$

- Emden-Weinert, Hougardy, Kreuter:

for any $k \ge 3$, k-COLORING is NP-complete for the class of *H*-free graphs whenever *H* contains a cycle

 \Rightarrow complexity of 3-COLORING problem when H is a forest?

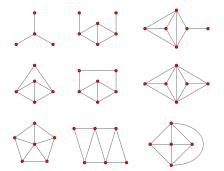
Theorem (Holyer for k = 3, Leven and Galil for $k \ge 4$)

For all $k \ge 3$, k-COLORING is NP-complete for line graphs of k-regular graphs.

H-free graphs

Theorem (Holyer for k = 3, Leven and Galil for $k \ge 4$)

For all $k \ge 3$, k-COLORING is NP-complete for line graphs of k-regular graphs.



Theorem (Holyer for k = 3, Leven and Galil for $k \ge 4$)

For all $k \ge 3$, k-COLORING is NP-complete for line graphs of k-regular graphs.

- every line graph is claw-free \Rightarrow 3-COLORING is NP-complete in the class of claw-free graphs \Rightarrow 3-COLORING is NP-complete on *H*-free graphs whenever *H* is a forest with $\Delta(H) \geq 3$

Theorem (Holyer for k = 3, Leven and Galil for $k \ge 4$)

For all $k \ge 3$, k-COLORING is NP-complete for line graphs of k-regular graphs.

- every line graph is claw-free \Rightarrow 3-COLORING is NP-complete in the class of claw-free graphs

 \Rightarrow 3-COLORING is NP-complete on *H*-free graphs whenever *H* is a forest with $\Delta(H) \ge 3$

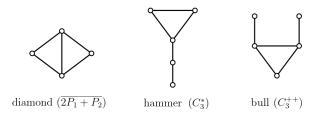
- computational complexity of 3-COLORING in other subclasses of claw-free graphs?

Kráľ, Kratochvíl, Tuza, Woeginger:

- 3-COLORING is NP-complete for (claw, C_r)-free graphs whenever $r \ge 4$
- 3-COLORING is NP-complete for (claw, diamond, *K*₄)-free graphs

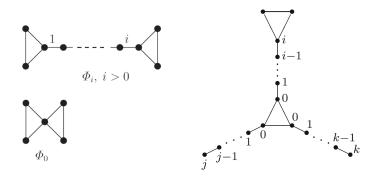
Malyshev:

• 3-COLORING is poly-time solvable for (claw, *H*)-free graphs for $H = P_5, C_3^*, C_3^{++}$



Theorem (Lozin, Purcell)

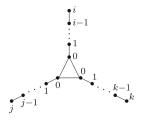
The 3-COLORING problem can be solved in polynomial time in the class of (claw, H)-free graphs only if every connected component of H is either a Φ_i with an odd i or a $T_{i,j,k}^{\Delta}$ with an even i or an induced subgraph of one of these two graphs.



 \Rightarrow 3-COLORING problem in a class of (claw, *H*)-free graphs can be polynomial-time solvable only if *H* contains at most 2 triangles in each of its connected components \Rightarrow 3-COLORING problem in a class of (claw, *H*)-free graphs can be polynomial-time solvable only if *H* contains at most 2 triangles in each of its connected components

- no triangles: list 3-coloring can be solved in linear time for (claw, P_t)-free graphs (Golovach, Paulusma, Song)
- for 1 triangle:

if *H* has every connected component of the form $T_{i,j,k}^1$, then the clique-width of (claw, *H*)-free graphs of bounded vertex degree is bounded by a constant (Lozin, Rautenbach)



• for 2 triangles in the same component of *H*:

• for 2 triangles in the same component of *H*:

$$\begin{split} H &= \Phi_0: \text{Randerath, Schiermeyer, Tewes (polynomial-time algorithm), Kamiński, Lozin (linear-time algorithm)} \\ H &= T^{\Delta}_{0,0,k}: \text{Kamiński, Lozin} \\ H &\in \{\Phi_1, \Phi_3\}: \text{Lozin, Purcell} \\ H &\in \{\Phi_2, \Phi_4\}: \text{Maceková, Maffray} \end{split}$$

In a graph *G*, we say that a non-empty set $R \subset V(G)$ is removable if any 3-coloring of $G \setminus R$ extends to a 3-coloring of *G*.

In a graph *G*, we say that a non-empty set $R \subset V(G)$ is removable if any 3-coloring of $G \setminus R$ extends to a 3-coloring of *G*.

- every graph on 5 vertices contains either a C_3 , or a $\overline{C_3}$, or a $C_5 \Rightarrow$ as K_4 and W_5 are not 3-colorable, every claw-free graph, which is 3-colorable, has $\Delta(G) \leq 4$

In a graph *G*, we say that a non-empty set $R \subset V(G)$ is removable if any 3-coloring of $G \setminus R$ extends to a 3-coloring of *G*.

- every graph on 5 vertices contains either a C_3 , or a $\overline{C_3}$, or a $C_5 \Rightarrow$ as K_4 and W_5 are not 3-colorable, every claw-free graph, which is 3-colorable, has $\Delta(G) \leq 4$
- $\delta(G) \geq 3$

In a graph *G*, we say that a non-empty set $R \subset V(G)$ is removable if any 3-coloring of $G \setminus R$ extends to a 3-coloring of *G*.

- every graph on 5 vertices contains either a C_3 , or a $\overline{C_3}$, or a $C_5 \Rightarrow$ as K_4 and W_5 are not 3-colorable, every claw-free graph, which is 3-colorable, has $\Delta(G) \leq 4$
- $\delta(G) \geq 3$
- G is 2-connected

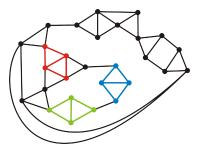
Definition

Any claw-free graph that is 2-connected, K_4 -free, and where every vertex has degree either 3 or 4 is called a standard claw-free graph.

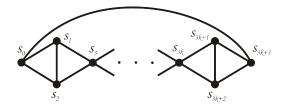
- diamond $D = K_4 \setminus e$
- given diamond $D \rightarrow$ vertices of degree 2 = peripheral, vertices of degree 3 = central

- given diamond $D \rightarrow$ vertices of degree 2 = peripheral, vertices of degree 3 = central

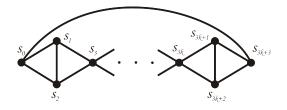
- types of diamonds in G:
 - pure diamond → both central vertices of diamond have degree 3 in G
 - perfect diamond → pure diamond in which both peripheral vertices have degree 3 in G



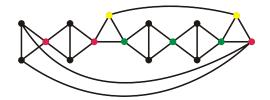
 $F_{3k+4}, k \ge 1$:



 $F_{3k+4}, k \ge 1$:

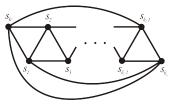


F'₁₆:



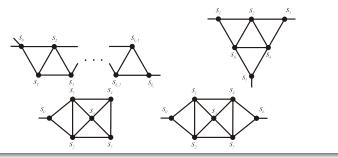
Let G be a standard claw-free graph and G contains a diamond. Then one of the following holds:

G is either a tyre, or a pseudo-tyre, or K_{2,2,1}, or K_{2,2,2}, or K_{2,2,2} \ e, or



Let G be a standard claw-free graph and G contains a diamond. Then one of the following holds:

- G is either a tyre, or a pseudo-tyre, or K_{2,2,1}, or K_{2,2,2}, or K_{2,2,2} \ e, or
- G contains a strip.



Let G be a standard claw-free graph and G contains a diamond. Then one of the following holds:

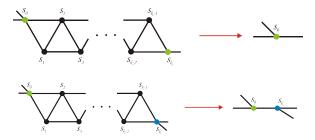
G is either a tyre, or a pseudo-tyre, or K_{2,2,1}, or K_{2,2,2}, or K_{2,2,2} \ e, or

G contains a strip.

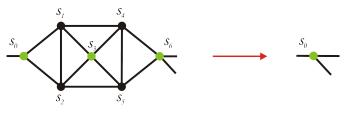
- if G is a tyre or a pseudo-tyre, then it is 3-colorable only if $|V(G)| \equiv 0 \pmod{3}$

- if G is isomorphic to $K_{2,2,1}$, $K_{2,2,2}$, or $K_{2,2,2} \setminus e$, then it is 3-colorable
- if G contains a strip which is not a diamond, then we can reduce it

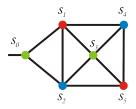
• if *G* contains a linear strip *S*, then *G'* is obtained by removing the vertices s_1, \ldots, s_{k-1} and identifying the vertices s_0 and s_t (if $k \equiv 0 \pmod{3}$), or adding the edge $s_0 s_k$ (if $k \neq 0 \pmod{3}$)



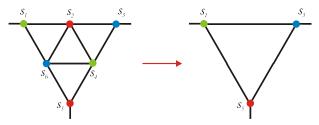
if G contains a square strip S, then G' is obtained by removing the vertices s₁,..., s₅ and identifying the vertices s₀ and s₆



• if *G* contains a semi-square strip *S*, then *G*' is obtained by removing the vertices *s*₁,..., *s*₅



if G contains a triple strip, then G' is obtained by removing the vertices s₂, s₄, s₆ and adding the three edges s₁s₃, s₁s₅, s₃s₅



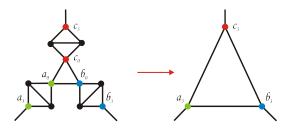
Let G be a standard claw-free graph that contains a strip S, and let G' be the reduced graph obtained from G by strip reduction. Then:

- (i) G' is claw-free.
- (ii) G is 3-colorable if and only if G' is 3-colorable.

(iii) If G is Φ_2 -free, and S is not a diamond, then G' is Φ_2 -free.

Lemma

Let G be a standard (claw, Φ_k)-free graph, $k \ge 4$. Assume that G contains a strip S which is not a diamond. Then either we can find in polynomial time a removable set, or |V(G)| is bounded by a function that depends only on k.

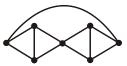


Let G be a (claw, Φ_2)-free graph. Let $T \subset V(G)$ be a set that induces a (1, 1, 1)-tripod. Let G' be the graph obtained from G by removing the vertices of $T \setminus \{a_3, b_3, c_3\}$ and adding the three edges a_3b_3, a_3c_3, b_3c_3 . Then:

- G' is (claw, Φ₂)-free,
- G is 3-colorable if and only if G' is 3-colorable.

Let G be a standard (claw, Φ_2)-free graph. Then either:

- G is a tyre, a pseudo-tyre, a $K_{2,2,1}$, or a $K_{2,2,2}$ or a $K_{2,2,2} \setminus e$, or
- G contains F7 as an induced subgraph, or
- G is diamond-free, or
- G has a set whose reduction yields a Φ₂-free graph, or
- G has a removable set.



One can decide 3-COLORING problem in polynomial time in the class of (claw, Φ_2)-free graphs.

Sketch of the proof.

Testing:

- G is standard

One can decide 3-COLORING problem in polynomial time in the class of (claw, Φ_2)-free graphs.

Sketch of the proof.

Testing:

- G is standard
- G contains F_7 as a subgraph

One can decide 3-COLORING problem in polynomial time in the class of (claw, Φ_2)-free graphs.

Sketch of the proof.

Testing:

- G is standard
- G contains F_7 as a subgraph

G contains a diamond - if yes, then 3-COLORING of G ↔
 3-COLORING on a smaller (claw, Φ₂)-free graph; otherwise G is diamond-free

One can decide 3-COLORING problem in polynomial time in the class of (claw, Φ_2)-free graphs.

Sketch of the proof.

Testing:

- G is standard
- G contains F_7 as a subgraph

- G contains a diamond if yes, then 3-COLORING of G ↔
 3-COLORING on a smaller (claw, Φ₂)-free graph; otherwise G is diamond-free
- *G* contains a chordless cycle of length at least 10 if no, *G* has bounded chordality; otherwise *G* has specifical structure and either it contains a removable set, or we can reduce vertices of this cycle (2-list coloring of C_{2k})

Mária Maceková (UPJŠ, Košice, Slovakia)

3-coloring of claw-free graphs

Let a Φ_0 be pure if none of its two triangles extends to a diamond.

Lemma

Let G be a standard (claw, Φ_4)-free graph. Assume that every strip in G is a diamond. If G contains a pure Φ_0 , then either $|V(G)| \le 127$ or we can find a removable set.

Let G be a standard (claw, Φ_4)-free graph in which every strip is a diamond. Assume that G contains a diamond, and let G' be the graph obtained from G by reducing a diamond. Then one of the following holds:

- G' is (claw, Φ₄)-free, and G is 3-colorable if and only if G' is 3-colorable;
- G contains F₇, F₁₀ or F'₁₆ (and so G is not 3-colorable);
- G contains a pure Φ_0 ;
- G contains a removable set;
- G contains a (1,1,1)-tripod.

Let G be a standard (claw, Φ_4)-free graph in which every strip is a diamond. Assume that G contains a diamond, and let G' be the graph obtained from G by reducing a diamond. Then one of the following holds:

- G' is (claw, Φ₄)-free, and G is 3-colorable if and only if G' is 3-colorable;
- G contains F₇, F₁₀ or F'₁₆ (and so G is not 3-colorable);
- G contains a pure Φ_0 ;
- G contains a removable set;
- G contains a (1,1,1)-tripod.

Corollary

One can decide 3-COLORING in polynomial time in the class of (claw,

 Φ_4)-free graphs.

Mária Maceková (UPJŠ, Košice, Slovakia)

3-coloring of claw-free graphs

Thank you for your attention!