On the 4-color theorem for signed graphs

<u>František Kardoš</u>, Jonathan Narboni LaBRI, Université de Bordeaux

Ghent Graph Theory Workshop on Structure and Algorithms 2019

Signed graphs : definition

A signed graph (G, σ) is a pair where G is the *underlying* graph and

$$\sigma: E(G) \longrightarrow \{-1,1\}$$

is called a *signature*.

Switching at a vertex v is switching the sign of the incident edges :

 $s_{v}((G,\sigma))=(G,\sigma')$ where :

$$\sigma'(e) = egin{cases} -\sigma(e) & ext{if e is incident to v,} \\ \sigma(e) & ext{otherwise.} \end{cases}$$

Signed graphs : sign of the cycles

Signed graphs : sign of the cycles

The sign of cycles is preserved when switching.

Signed graphs : cycle characterization

- Two signed graphs are switching-equivalent iff their cycles have the same sign.
- ► It suffices to consider a cycle base.
- For planar graphs we can consider the **facial cycles**.
- A cycle is balanced if it has an even number of negative edges.
- A cycle is unbalanced if it has an odd number of negative edges.

Signed graphs : coloring

Zaslavsky (1982); Máčajová, Raspaud and Škoviera (2016) :

a signed k-coloring :

$$c: V(G) \longrightarrow \{-k/2, ..., -1, 1, ..., k/2\} \text{ if } k \text{ is even} \\ \{-\lfloor k/2 \rfloor, ..., -1, 0, 1, ..., \lfloor k/2 \rfloor\} \text{ if } k \text{ is odd} \\ \text{s.t. } c(u) \neq \sigma(uv) \cdot c(v).$$

We denote $\chi(G)$ the minimum k s.t. such a coloring exists.

Signed graphs : coloring and switching

To preserve the coloring when switching at a vertex, it suffices to switch the sign of the color.

Theorem (Máčajová, Raspaud, Škoviera, 2016) Let G be a signed planar graph, then $\chi(G) \leq 5$.

- Theorem (Máčajová, Raspaud, Škoviera, 2016) Let G be a signed planar graph, then $\chi(G) \leq 5$.
- Theorem (Máčajová, Raspaud, Škoviera, 2016) Let G be a signed planar graph, then :
 - If G is triangle-free, then $\chi(G) \leq 4$.
 - If G has girth at least 5, then $\chi(G) \leq 3$.

- Theorem (Máčajová, Raspaud, Škoviera, 2016) Let G be a signed planar graph, then $\chi(G) \leq 5$.
- Theorem (Máčajová, Raspaud, Škoviera, 2016) Let G be a signed planar graph, then :
 - If G is triangle-free, then $\chi(G) \leq 4$.
 - If G has girth at least 5, then $\chi(G) \leq 3$.

Theorem (Jin, Kang, Steffen, 2016) Let G be a signed planar graph, then $ch(G) \le 5$.

Signed graphs : 4-CT for signed graphs?

Conjecture (Máčajová, Raspaud, Škoviera, 2016) Every signed planar graph is 4-signed-colorable.

Signed graphs : 4-CT for signed graphs?

Conjecture (Máčajová, Raspaud, Škoviera, 2016) Every signed planar graph is 4-signed-colorable.

Theorem (K., Narboni, 2019+)

There exists a signed planar graph on 39 vertices that is not 4-signed-colorable.

A 39-vertex non-4-signed-colorable graph

Non signed triangulations : 4-coloring reduces to 3-edge-coloring of the dual

Non signed triangulations : 4-coloring reduces to 3-edge-coloring of the dual 9 3 4

Non signed triangulations : 4-coloring reduces to 3-edge-coloring of the dual

Dual graph of a signed planar graph

Dual graph of a signed planar graph

Dual graph of a signed planar graph

Switching preserves the signs of the vertices.

Dual graph of a signed planar graph : definition

Let (G, σ) be a 3-connected planar signed graph, the dual is : (G^*, τ) where G^* is the dual of G, and $\tau : V(G^*) \longrightarrow \{-1, 1\}$ Where $\tau(f^*) = \sigma(f)$, with f^* being the vertex of G^*

corresponding to the face f of G.

Dual graph of a signed planar graph : properties

- The vertices of G* have a sign, this sign is preserved by switching.
- In G*, there is always an even number of negative vertices.
- If G is a triangulation, G* is cubic, so it also has an even number of positive vertices.

Every planar graph is 4-signed-colorable.

Every planar graph is 4-signed-colorable.

Every planar triangulation is 4-signed-colorable.

Every planar graph is 4-signed-colorable.

\Leftrightarrow

Every planar triangulation is 4-signed-colorable.

Every cubic 3-connected planar graph with an even number of negative vertices has a weak edge labeling.

Every planar graph is 4-signed-colorable.

\Leftrightarrow

Every planar triangulation is 4-signed-colorable.

\Leftrightarrow

Every cubic 3-connected planar graph with an even number of negative vertices has a weak edge labeling.

Every cubic 3-connected planar graph with an even number of negative vertices has a **strong edge labeling**.

 \Leftrightarrow

Every planar graph is 4-signed-colorable.

\Leftrightarrow

Every planar triangulation is 4-signed-colorable.

\Leftrightarrow

Every cubic 3-connected planar graph with an even number of negative vertices has a weak edge labeling.

Every cubic 3-connected planar graph with an even number of negative vertices has a strong edge labeling.

 \Leftrightarrow

Every cubic 3-connected planar graph with an even number of negative vertices has a consistent 2-factor.

 \Leftrightarrow

Let G^* be a 3-connected cubic planar graph with an even number of negative vertices. A 2-factor of G^* is <u>consistent</u> if each cycle in the 2-factor is incident to an <u>even number of</u> **positive vertices**. Let G^* be a 3-connected cubic planar graph with an even number of negative vertices. A 2-factor of G^* is <u>consistent</u> if each cycle in the 2-factor is incident to an <u>even number of</u> **positive vertices**.

If G^* is hamiltonian, then it has a consistent 2-factor.

A cubic graph with no consistent 2-factor

Theorem

The Tutte's graph with a choice of negative vertices as depicted in the following figure does not admit a consistent 2-factor.

The Tutte's fragment

Lemma

Let G^* be a 3-connected cubic planar graph with an even number of negative vertices, containing a Tutte's fragment T_0 attached by the edges e_1 , e_2 , e_3 , as depicted in the following figure. Then every consistent 2-factor of G^* contains the edge e_1 .

A graph with no 4-signed-coloring

Future work

- Search for a minimum counter-example ($21 \le n \le 39$).
- Study the complexity of deciding if a signed planar is 4-colorable.
- Try to translate other types of coloring to edge labeling of the dual (e.g., pair list coloring).

Thank you!