On the 4-color theorem for signed graphs

František Kardoš, Jonathan Narboni
LaBRI, Université de Bordeaux

Ghent Graph Theory Workshop on Structure and Algorithms 2019

Signed graphs: definition

A signed graph (G, σ) is a pair where G is the underlying graph and

$$
\sigma: E(G) \longrightarrow\{-1,1\}
$$

is called a signature.

Signed graphs: switching a vertex

Switching at a vertex v is switching the sign of the incident edges :
$s_{v}((G, \sigma))=\left(G, \sigma^{\prime}\right)$ where :

$$
\sigma^{\prime}(e)= \begin{cases}-\sigma(e) & \text { if } e \text { is incident to } v, \\ \sigma(e) & \text { otherwise }\end{cases}
$$

Signed graphs: switching a vertex

Signed graphs: switching a vertex

Signed graphs: switching a vertex

Signed graphs: sign of the cycles

Signed graphs: sign of the cycles

The sign of cycles is preserved when switching.

Signed graphs : cycle characterization

- Two signed graphs are switching-equivalent iff their cycles have the same sign.
- It suffices to consider a cycle base.
- For planar graphs we can consider the facial cycles.
- A cycle is balanced if it has an even number of negative edges.
- A cycle is unbalanced if it has an odd number of negative edges.

Signed graphs : coloring

Zaslavsky (1982) ; Máčajová, Raspaud and Škoviera (2016) : a signed k-coloring :

$$
\begin{aligned}
c: V(G) \longrightarrow & \{-k / 2, \ldots,-1,1, \ldots, k / 2\} \text { if } k \text { is even } \\
& \{-\lfloor k / 2\rfloor, \ldots,-1,0,1, \ldots,\lfloor k / 2\rfloor\} \text { if } k \text { is odd }
\end{aligned}
$$

s.t. $c(u) \neq \sigma(u v) \cdot c(v)$.

We denote $\chi(G)$ the minimum k s.t. such a coloring exists.

Signed graphs: coloring and switching

To preserve the coloring when switching at a vertex, it suffices to switch the sign of the color.

Extension of results of proper coloring

Theorem (Máčajová, Raspaud, Škoviera, 2016)
Let G be a simple connected signed graph. If G is not the balanced complete graph, an balanced odd cycle or an unbalanced even cycle, then $\chi(G) \leq \Delta$.

Extension of results of proper coloring

Theorem (Máčajová, Raspaud, Škoviera, 2016) Let G be a simple connected signed graph. If G is not the balanced complete graph, an balanced odd cycle or an unbalanced even cycle, then $\chi(G) \leq \Delta$.
Theorem (Máčajová, Raspaud, Škoviera, 2016)
Let G be a signed planar graph, then $\chi(G) \leq 5$.

Extension of results of proper coloring

Theorem (Máčajová, Raspaud, Škoviera, 2016) Let G be a simple connected signed graph. If G is not the balanced complete graph, an balanced odd cycle or an unbalanced even cycle, then $\chi(G) \leq \Delta$.
Theorem (Máčajová, Raspaud, Škoviera, 2016)
Let G be a signed planar graph, then $\chi(G) \leq 5$.
Theorem (Máčajová, Raspaud, Škoviera, 2016)
Let G be a signed planar graph, then :

- If G is triangle-free, then $\chi(G) \leq 4$.
- If G has girth at least 5 , then $\chi(G) \leq 3$.

Extension of results of proper coloring

Theorem (Máčajová, Raspaud, Škoviera, 2016) Let G be a simple connected signed graph. If G is not the balanced complete graph, an balanced odd cycle or an unbalanced even cycle, then $\chi(G) \leq \Delta$.
Theorem (Máčajová, Raspaud, Škoviera, 2016)
Let G be a signed planar graph, then $\chi(G) \leq 5$.
Theorem (Máčajová, Raspaud, Škoviera, 2016)
Let G be a signed planar graph, then :

- If G is triangle-free, then $\chi(G) \leq 4$.
- If G has girth at least 5 , then $\chi(G) \leq 3$.

Theorem (Jin, Kang, Steffen, 2016)
Let G be a signed planar graph, then $\operatorname{ch}(G) \leq 5$.

Signed graphs: 4-CT for signed graphs?

Conjecture (Máčajová, Raspaud, Škoviera, 2016)
Every signed planar graph is 4-signed-colorable.

Signed graphs: 4-CT for signed graphs?

Conjecture (Máčajová, Raspaud, Škoviera, 2016)
Every signed planar graph is 4-signed-colorable.
Theorem (K., Narboni, 2019+)
There exists a signed planar graph on 39 vertices that is not 4 -signed-colorable.

A 39-vertex non-4-signed-colorable graph

Non signed triangulations: 4-coloring reduces to 3-edge-coloring of the dual

Non signed triangulations: 4-coloring reduces to 3-edge-coloring of the dual

Non signed triangulations: 4-coloring reduces to 3-edge-coloring of the dual

3-edge coloring of the dual

Dual graph of a signed planar graph

Dual graph of a signed planar graph

Dual graph of a signed planar graph

Switching preserves the signs of the vertices.

Dual graph of a signed planar graph : definition

Let (G, σ) be a 3-connected planar signed graph, the dual is :
$\left(G^{*}, \tau\right)$ where G^{*} is the dual of G, and

$$
\tau: V\left(G^{*}\right) \longrightarrow\{-1,1\}
$$

Where $\tau\left(f^{*}\right)=\sigma(f)$, with f^{*} being the vertex of G^{*} corresponding to the face f of G.

Dual graph of a signed planar graph : properties

- The vertices of G^{*} have a sign, this sign is preserved by switching.
- In G^{*}, there is always an even number of negative vertices.
- If G is a triangulation, G^{*} is cubic, so it also has an even number of positive vertices.

From 4-colorings to consistent 2-factors

Every planar graph is 4-signed-colorable.

From 4-colorings to consistent 2-factors

Every planar graph is 4-signed-colorable.

Every planar triangulation is 4-signed-colorable.

From 4-colorings to consistent 2-factors

Every planar graph is 4-signed-colorable.

Every planar triangulation is 4-signed-colorable.

Every cubic 3-connected planar graph with an even number of negative vertices has a weak edge labeling.

From 4-colorings to consistent 2-factors

Every planar graph is 4-signed-colorable.
\Longleftrightarrow
Every planar triangulation is 4-signed-colorable.

Every cubic 3-connected planar graph with an even number of negative vertices has a weak edge labeling.
\Longleftrightarrow
Every cubic 3-connected planar graph with an even number of negative vertices has a strong edge labeling.

From 4-colorings to consistent 2-factors

Every planar graph is 4-signed-colorable.

Every planar triangulation is 4-signed-colorable.

Every cubic 3-connected planar graph with an even number of negative vertices has a weak edge labeling.

Every cubic 3-connected planar graph with an even number of negative vertices has a strong edge labeling.

Every cubic 3-connected planar graph with an even number of negative vertices has a consistent 2-factor.

Consistent 2-factor

Let G^{*} be a 3-connected cubic planar graph with an even number of negative vertices. A 2-factor of G^{*} is consistent if each cycle in the 2 -factor is incident to an even number of positive vertices.

Consistent 2-factor

Let G^{*} be a 3-connected cubic planar graph with an even number of negative vertices. A 2-factor of G^{*} is consistent if each cycle in the 2 -factor is incident to an even number of positive vertices.

If G^{*} is hamiltonian, then it has a consistent 2-factor.

A cubic graph with no consistent 2-factor

Theorem
The Tutte's graph with a choice of negative vertices as depicted in the following figure does not admit a consistent 2-factor.

The Tutte's fragment

Lemma

Let G^{*} be a 3-connected cubic planar graph with an even number of negative vertices, containing a Tutte's fragment T_{0} attached by the edges e_{1}, e_{2}, e_{3}, as depicted in the following figure. Then every consistent 2-factor of G^{*} contains the edge e_{1}.

A graph with no 4-signed-coloring

Future work

- Search for a minimum counter-example ($21 \leq n \leq 39$).
- Study the complexity of deciding if a signed planar is 4-colorable.
- Try to translate other types of coloring to edge labeling of the dual (e.g., pair list coloring).

Thank you!

