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Bar-Joint Frameworks

A d-dimensional bar-joint framework is a pair (G , p),
where G = (V ,E ) is a graph and p is a map from V to Rd .

We consider the framework to be a straight line realization of
G in Rd in which the length of an edge uv ∈ E is given by the
Euclidean distance ‖p(u)− p(v)‖ between the points p(u)
and p(v).

It is rigid if every continuous motion of the vertices of (G , p)
in Rd , which preserves the lengths of its edges, also preserves
the distances between all pairs of vertices.)
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Rigidity: Example
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Figure: The 2-dimensional frameworks (G , p0) and (G , p1) are not rigid
since (G , p1) can be obtained from (G , p0) by a continuous motion in R2

which preserves all edge lengths, but changes the distance between v1
and v3.
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Complexity

It is NP-hard to determine whether a given d-dimensional
framework (G , p) is rigid for d ≥ 2 (Abbot 2008).

This problem becomes more tractable if we restrict attention
to ‘generic’ frameworks (those for which the set of
coordinates of all points p(v), v ∈ V , is algebraically
independent over Q). In this case the rigidity of (G , p)
depends only on the graph G .

We say that a graph G is rigid in Rd if some (or equivalently
every) generic realisation of G in Rd is rigid.

The problem of characterising graphs which are rigid in Rd is
solved for d = 1 (easy) and d = 2 (Pollaczek-Geiringer 1927,
Laman 1970), but is open for d ≥ 3.
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The Rigidity Matrix

The rigidity of a given framework (G , p) is determined by the
solution space of the system of quadratic equations

‖pt(u)− pt(v)‖2 = duv for all uv ∈ E (1)

where pt(u) is the position of u at time t, p0 = p, and
duv = ‖p(u)− p(v)‖2.

Differentiating (1) wrt t and putting t = 0, we obtain the following
linear system of equations for the instantaneous velocities ṗ(u)
at time t = 0.

(p(u)− p(v)) · (ṗ(u)− ṗ(v)) = 0 for all uv ∈ E (2)

The rigidity matrix R(G , p) of (G , p) is the matrix of
coefficients of (2). It is an |E | × d |V | matrix with rows indexed by
E and sequences of d consecutive columns indexed by V .
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Example

The row of R(G , p) indexed by e = uv ∈ E is given by[ u v

e=uv 0 . . . 0 p(u)− p(v) 0 . . . 0 p(v)− p(u) 0 . . . 0
]
.

Example r r
r r

v1 v2

v3v4

e1

e2

e3

e4


v1 v2 v3 v4

e1 p(v1)− p(v2) p(v2)− p(v1) 0 0
e2 0 p(v2)− p(v3) p(v3)− p(v2) 0
e3 0 0 p(v3)− p(v4) p(v4)− p(v3)
e4 p(v1)− p(v4) 0 0 p(v4)− p(v1)
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Infinitesimal Motions

Each vector ṗ in the kernal of R(G , p) is an infinitesimal motion
of (G , p).

Since each translation or rotation of Rd gives rise to an
infinitesimal motion of (G , p), the dimension of the kernal of
R(G , p) is at least

(d+1
2

)
whenever p(V ) affinely spans Rd .

Hence

rank R(G , p) ≤ d |V | −
(
d + 1

2

)
,

and (G , p) will be rigid if equality holds.
We say that (G , p) is infinitesimally rigid if

rank R(G , p) =

{
d |V | −

(d+1
2

)
if |V | ≥ d + 1(|V |

2

)
if |V | ≤ d + 1
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Generic Rigidity and Independence

Theorem [Gluck, 1975]

A generic d-dimensional framework is rigid if and only if it is
infinitesimally rigid.

This implies that a generic framework (G , p) with |V | ≥ d + 1 is
rigid if and only if R(G , p) has rank d |V | −

(d+1
2

)
. Hence:

The rigidity of (G , p) depends only on the graph G and the
dimension d when (G , p) is generic.

We can determine whether G is rigid in Rd if we can
determine when a given set of rows of R(G , p) is linearly
independent when (G , p) is generic.
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Matroids

A matroid M is a pair (E , I) where E is a finite set and I is a
family of subsets of E satisfying:

∅ ∈ I;

if A ⊆ B ⊆ E and B ∈ I then A ∈ I;

if A,B ∈ I and |A| < |B| then there exists x ∈ B \ A such
that A + x ∈ I.

A ⊆ E is independent if A ∈ I and A is dependent if A 6∈ I.
A is a circuit if it is a minimal dependent set. The rank of M is
the size of a largest independent set in M.

We can define a partial order on the set of all matroids with the
same groundset as follows. Given two matroids M1 = (E , I1) and
M2 = (E , I2), we say M1 � M2 if I1 ⊆ I2.
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The d-dimensional rigidity matroid of G

The d-dimensional rigidity matroid Rd(G ) of a graph
G = (V ,E ) is the matroid on E in which a set F ⊆ E is
independent if the rows of R(G , p) indexed by F are linearly
independent for some generic (G , p) in Rd .

We say a graph G ⊆ Kn is independent in Rd if E (G ) is
independent in Rd(Kn).

Note that if we can determine independence for all graphs in Rd

then we can determine rigidity for all graphs in Rd .
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Abstract d-rigidity matroids: Jack Graver 1991

Let M be a matroid on E (Kn) for some n ≥ d + 2. Then M is an
abstract d-rigidity matroid if rank M = dn −

(d+1
2

)
, and every

Kd+2 ⊆ Kn is a circuit in M (Nguyen 2010).

Conjecture [Graver, 1991]

(a) There is a unique maximal abstract d-rigidity matroid on
E (Kn) for all d and all n ≥ d + 2.
(b) This maximal abstract d-rigidity matroid is equal to Rd(Kn).

Graver verified his conjecture for d = 1, 2.

Whiteley showed that (b) is false for all d ≥ 4 in 1996 by showing
that the ‘cofactor matroid’ Cd−2d−1(Kn) is an abstract d-rigidity

matroid and Cd−2d−1(Kn) 6� Rd(Kn) when d ≥ 4 and n ≥ 12.

We show C12(Kn) is the maximum abstract 3-rigidity matroid on
E (Kn) and characterise independence in this matroid.
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The C d−2
d−1 -cofactor matroid

Let (G , p) be a framework in R2 and put p(vi ) = (xi , yi ) for
vi ∈ V . For vi , vj ∈ E let Dd(vi , vj) ∈ Rd be defined by

Dd(vi , vj) = ((xi − xj)
d−1, (xi − xj)

d−2(yi − yj), . . . , (yi − yj)
d−1).

The Cd−2
d−1 -cofactor matrix of (G , p) is the matrix Cd−2

d−1 (G , p) of
size |E | × d |V | in which the row associated with the edge e = vivj
with i < j is[ vi vj

e=vivj 0 . . . 0 Dd(vi , vj) 0 . . . 0 −Dd(vi , vj) 0 . . . 0
]
.

The Cd−2
d−1 -cofactor matroid of G , Cd−2d−1(G ), is the row matroid of

the cofactor matrix Cd−2
d−1 (G , p) for any generic p. We have:

Cd−2d−1(Kn) = Rd(Kn) for d = 1, 2.

Cd−2d−1(Kn) 6= Rd(Kn) for d ≥ 4 and n ≥ 12.
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The maximal abstract 3-rigidity matroid

A K5-sequence in Kn is a sequence of subgraphs (K 1
5 ,K

2
5 , . . . ,K

t
5)

each of which is isomorphic to K5.
It is proper if K i

5 6⊆
⋃i−1

j=1 K
j
5 for all 2 ≤ i ≤ t.

Theorem [Clinch,Tanigawa, BJ, 2019+]

(a) C21 is the unique maximal abstract 3-rigidity matroid on E (Kn);
(b) F ⊆ E (Kn) is independent in C21 if and only if

|F ′| ≤

∣∣∣∣∣
t⋃

i=1

E (K i
5)

∣∣∣∣∣− t

for all F ′ ⊆ F and all proper K5-sequences (K 1
5 ,K

2
5 , . . . ,K

t
5) in Kn

which cover F ′.
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The maximal abstract 3-rigidity matroid

A K5-sequence in Kn is a sequence of subgraphs (K 1
5 ,K

2
5 , . . . ,K

t
5)

each of which is isomorphic to K5.
It is proper if K i

5 6⊆
⋃i−1

j=1 K
j
5 for all 2 ≤ i ≤ t.

Theorem [Clinch,Tanigawa, BJ, 2019+]

(a) C21 is the unique maximal abstract 3-rigidity matroid on E (Kn);
(b) F ⊆ E (Kn) is independent in C21 if and only if

|F ′| ≤

∣∣∣∣∣
t⋃

i=1

E (K i
5)

∣∣∣∣∣− t

for all F ′ ⊆ F and all proper K5-sequences (K 1
5 ,K

2
5 , . . . ,K

t
5) in Kn

which cover F ′.
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Example
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e3 G

Let F = E (G ), F ′ = F \ {e1, e2.e3} and (K 1
5 ,K

2
5 , . . . ,K

7
5 ) be the

‘obvious’ proper K5-sequence which covers F ′. We have

57 = |F ′| >

∣∣∣∣∣
7⋃

i=1

E (K i
5)

∣∣∣∣∣− 7 = 56

so F is not independent in C12 .
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