The maximal abstract 3-rigidity matroid

Bill Jackson School of Mathematical Sciences Queen Mary, University of London England

GGTW, 12-14 August, 2019

・ 同 ト ・ ヨ ト ・ ヨ ト

• A *d*-dimensional bar-joint framework is a pair (*G*, *p*), where *G* = (*V*, *E*) is a graph and *p* is a map from *V* to \mathbb{R}^d .

Bar-Joint Frameworks

- A *d*-dimensional bar-joint framework is a pair (*G*, *p*), where *G* = (*V*, *E*) is a graph and *p* is a map from *V* to \mathbb{R}^d .
- We consider the framework to be a straight line realization of G in ℝ^d in which the *length* of an edge uv ∈ E is given by the Euclidean distance ||p(u) p(v)|| between the points p(u) and p(v).

Bar-Joint Frameworks

- A *d*-dimensional bar-joint framework is a pair (*G*, *p*), where *G* = (*V*, *E*) is a graph and *p* is a map from *V* to \mathbb{R}^d .
- We consider the framework to be a straight line realization of G in ℝ^d in which the *length* of an edge uv ∈ E is given by the Euclidean distance ||p(u) p(v)|| between the points p(u) and p(v).
- It is **rigid** if every continuous motion of the vertices of (G, p) in ℝ^d, which preserves the lengths of its edges, also preserves the distances between all pairs of vertices.)

(4月) (1日) (日)

Rigidity: Example

Figure: The 2-dimensional frameworks (G, p_0) and (G, p_1) are not rigid since (G, p_1) can be obtained from (G, p_0) by a continuous motion in \mathbb{R}^2 which preserves all edge lengths, but changes the distance between v_1 and v_3 .

・ 同 ト ・ ヨ ト ・ ヨ ト

 It is NP-hard to determine whether a given *d*-dimensional framework (G, p) is rigid for d ≥ 2 (Abbot 2008).

・ロン ・回 と ・ ヨン ・ ヨン

- It is NP-hard to determine whether a given *d*-dimensional framework (G, p) is rigid for $d \ge 2$ (Abbot 2008).
- This problem becomes more tractable if we restrict attention to 'generic' frameworks (those for which the set of coordinates of all points p(v), v ∈ V, is algebraically independent over Q). In this case the rigidity of (G, p) depends only on the graph G.

・ 同 ト ・ ヨ ト ・ ヨ ト

- It is NP-hard to determine whether a given *d*-dimensional framework (G, p) is rigid for $d \ge 2$ (Abbot 2008).
- This problem becomes more tractable if we restrict attention to 'generic' frameworks (those for which the set of coordinates of all points p(v), v ∈ V, is algebraically independent over Q). In this case the rigidity of (G, p) depends only on the graph G.
- We say that a graph G is **rigid in** \mathbb{R}^d if some (or equivalently every) generic realisation of G in \mathbb{R}^d is rigid.

・ 同 ト ・ ヨ ト ・ ヨ ト

- It is NP-hard to determine whether a given *d*-dimensional framework (G, p) is rigid for $d \ge 2$ (Abbot 2008).
- This problem becomes more tractable if we restrict attention to 'generic' frameworks (those for which the set of coordinates of all points p(v), v ∈ V, is algebraically independent over Q). In this case the rigidity of (G, p) depends only on the graph G.
- We say that a graph G is **rigid in** \mathbb{R}^d if some (or equivalently every) generic realisation of G in \mathbb{R}^d is rigid.
- The problem of characterising graphs which are rigid in ℝ^d is solved for d = 1 (easy) and d = 2 (Pollaczek-Geiringer 1927, Laman 1970), but is open for d ≥ 3.

The Rigidity Matrix

The rigidity of a given framework (G, p) is determined by the solution space of the system of quadratic equations

$$\|p_t(u) - p_t(v)\|^2 = d_{uv}$$
 for all $uv \in E$ (1)

where $p_t(u)$ is the position of u at time t, $p_0 = p$, and $d_{uv} = ||p(u) - p(v)||^2$.

• (1) • (1) • (1) • (1)

The rigidity of a given framework (G, p) is determined by the solution space of the system of quadratic equations

$$\|p_t(u) - p_t(v)\|^2 = d_{uv}$$
 for all $uv \in E$ (1)

where $p_t(u)$ is the position of u at time t, $p_0 = p$, and $d_{uv} = ||p(u) - p(v)||^2$.

Differentiating (1) wrt t and putting t = 0, we obtain the following linear system of equations for the **instantaneous velocities** $\dot{p}(u)$ at time t = 0.

$$(p(u) - p(v)) \cdot (\dot{p}(u) - \dot{p}(v)) = 0 \text{ for all } uv \in E$$
(2)

・ 同 ト ・ ヨ ト ・ ヨ ト …

The rigidity of a given framework (G, p) is determined by the solution space of the system of quadratic equations

$$\|p_t(u) - p_t(v)\|^2 = d_{uv}$$
 for all $uv \in E$ (1)

where $p_t(u)$ is the position of u at time t, $p_0 = p$, and $d_{uv} = ||p(u) - p(v)||^2$.

Differentiating (1) wrt t and putting t = 0, we obtain the following linear system of equations for the **instantaneous velocities** $\dot{p}(u)$ at time t = 0.

$$(p(u) - p(v)) \cdot (\dot{p}(u) - \dot{p}(v)) = 0 \text{ for all } uv \in E$$
(2)

The **rigidity matrix** R(G, p) of (G, p) is the matrix of coefficients of (2). It is an $|E| \times d|V|$ matrix with rows indexed by E and sequences of d consecutive columns indexed by V.

・ロン ・回 と ・ ヨ と ・ ヨ と

Example

The row of R(G, p) indexed by $e = uv \in E$ is given by e=uv [0...0 p(u) - p(v) 0...0 p(v) - p(u) 0...0].Example V4 e3 V3

イロン イ団ン イヨン イヨン 三日

Infinitesimal Motions

Each vector \dot{p} in the kernal of R(G, p) is an **infinitesimal motion** of (G, p).

Each vector \dot{p} in the kernal of R(G, p) is an **infinitesimal motion** of (G, p). Since each translation or rotation of \mathbb{R}^d gives rise to an infinitesimal motion of (G, p), the dimension of the kernal of R(G, p) is at least $\binom{d+1}{2}$ whenever p(V) affinely spans \mathbb{R}^d .

Each vector \dot{p} in the kernal of R(G, p) is an **infinitesimal motion** of (G, p).

Since each translation or rotation of \mathbb{R}^d gives rise to an infinitesimal motion of (G, p), the dimension of the kernal of R(G, p) is at least $\binom{d+1}{2}$ whenever p(V) affinely spans \mathbb{R}^d . Hence

$$\mathsf{rank} \; \mathsf{R}(\mathsf{G},\mathsf{p}) \leq \mathsf{d}|\mathsf{V}| - {d+1 \choose 2},$$

and (G, p) will be rigid if equality holds.

Each vector \dot{p} in the kernal of R(G, p) is an **infinitesimal motion** of (G, p).

Since each translation or rotation of \mathbb{R}^d gives rise to an infinitesimal motion of (G, p), the dimension of the kernal of R(G, p) is at least $\binom{d+1}{2}$ whenever p(V) affinely spans \mathbb{R}^d . Hence

$$\mathsf{rank} \; \mathsf{R}(\mathsf{G},\mathsf{p}) \leq \mathsf{d}|\mathsf{V}| - {d+1 \choose 2},$$

and (G, p) will be rigid if equality holds. We say that (G, p) is **infinitesimally rigid** if

$$\mathsf{rank} \ \mathsf{R}(\mathsf{G}, \mathsf{p}) = \left\{ \begin{array}{cc} d|V| - \binom{d+1}{2} & \text{ if } |V| \ge d+1 \\ \binom{|V|}{2} & \text{ if } |V| \le d+1 \end{array} \right.$$

A generic *d*-dimensional framework is rigid if and only if it is infinitesimally rigid.

• (1) • (

A generic *d*-dimensional framework is rigid if and only if it is infinitesimally rigid.

This implies that a generic framework (G, p) with $|V| \ge d + 1$ is rigid if and only if R(G, p) has rank $d|V| - \binom{d+1}{2}$. Hence:

高 とう モン・ く ヨ と

A generic *d*-dimensional framework is rigid if and only if it is infinitesimally rigid.

This implies that a generic framework (G, p) with $|V| \ge d + 1$ is rigid if and only if R(G, p) has rank $d|V| - \binom{d+1}{2}$. Hence:

• The rigidity of (G, p) depends only on the graph G and the dimension d when (G, p) is generic.

高 とう モン・ く ヨ と

A generic *d*-dimensional framework is rigid if and only if it is infinitesimally rigid.

This implies that a generic framework (G, p) with $|V| \ge d + 1$ is rigid if and only if R(G, p) has rank $d|V| - \binom{d+1}{2}$. Hence:

- The rigidity of (G, p) depends only on the graph G and the dimension d when (G, p) is generic.
- We can determine whether G is rigid in ℝ^d if we can determine when a given set of rows of R(G, p) is linearly independent when (G, p) is generic.

A matroid \mathcal{M} is a pair (E, \mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\emptyset \in \mathcal{I};$
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

A matroid M is a pair (E, \mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\emptyset \in \mathcal{I};$
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

 $A \subseteq E$ is **independent** if $A \in \mathcal{I}$ and A is **dependent** if $A \notin \mathcal{I}$. A is a **circuit** if it is a minimal dependent set. The **rank** of \mathcal{M} is the size of a largest independent set in \mathcal{M} .

A matroid M is a pair (E, \mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\emptyset \in \mathcal{I};$
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

 $A \subseteq E$ is **independent** if $A \in \mathcal{I}$ and A is **dependent** if $A \notin \mathcal{I}$. A is a **circuit** if it is a minimal dependent set. The **rank** of \mathcal{M} is the size of a largest independent set in \mathcal{M} .

We can define a partial order on the set of all matroids with the same groundset as follows. Given two matroids $\mathcal{M}_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$, we say $\mathcal{M}_1 \preceq M_2$ if $\mathcal{I}_1 \subseteq \mathcal{I}_2$.

・ロン ・四 ・ ・ ヨン ・ ヨン

The *d*-dimensional rigidity matroid $\mathcal{R}_d(G)$ of a graph G = (V, E) is the matroid on *E* in which a set $F \subseteq E$ is **independent** if the rows of R(G, p) indexed by *F* are linearly independent for some generic (G, p) in \mathbb{R}^d .

The *d*-dimensional rigidity matroid $\mathcal{R}_d(G)$ of a graph G = (V, E) is the matroid on *E* in which a set $F \subseteq E$ is **independent** if the rows of R(G, p) indexed by *F* are linearly independent for some generic (G, p) in \mathbb{R}^d .

We say a graph $G \subseteq K_n$ is **independent in** \mathbb{R}^d if E(G) is independent in $\mathcal{R}_d(K_n)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The *d*-dimensional rigidity matroid $\mathcal{R}_d(G)$ of a graph G = (V, E) is the matroid on *E* in which a set $F \subseteq E$ is **independent** if the rows of R(G, p) indexed by *F* are linearly independent for some generic (G, p) in \mathbb{R}^d .

We say a graph $G \subseteq K_n$ is **independent in** \mathbb{R}^d if E(G) is independent in $\mathcal{R}_d(K_n)$.

Note that if we can determine independence for all graphs in \mathbb{R}^d then we can determine rigidity for all graphs in \mathbb{R}^d .

Let \mathcal{M} be a matroid on $E(K_n)$ for some $n \ge d+2$. Then \mathcal{M} is an **abstract** *d*-rigidity matroid if rank $M = dn - \binom{d+1}{2}$, and every $K_{d+2} \subseteq K_n$ is a circuit in \mathcal{M} (Nguyen 2010).

Let \mathcal{M} be a matroid on $E(K_n)$ for some $n \ge d+2$. Then \mathcal{M} is an **abstract** *d*-rigidity matroid if rank $M = dn - \binom{d+1}{2}$, and every $K_{d+2} \subseteq K_n$ is a circuit in \mathcal{M} (Nguyen 2010).

Conjecture [Graver, 1991]

(a) There is a unique maximal abstract *d*-rigidity matroid on *E*(*K_n*) for all *d* and all *n* ≥ *d* + 2.
(b) This maximal abstract *d*-rigidity matroid is equal to *R_d*(*K_n*).

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Let \mathcal{M} be a matroid on $E(K_n)$ for some $n \ge d+2$. Then \mathcal{M} is an **abstract** *d*-rigidity matroid if rank $M = dn - \binom{d+1}{2}$, and every $K_{d+2} \subseteq K_n$ is a circuit in \mathcal{M} (Nguyen 2010).

Conjecture [Graver, 1991]

(a) There is a unique maximal abstract *d*-rigidity matroid on *E*(*K_n*) for all *d* and all *n* ≥ *d* + 2.
(b) This maximal abstract *d*-rigidity matroid is equal to *R_d*(*K_n*).

Graver verified his conjecture for d = 1, 2.

(4月) (4日) (4日)

Let \mathcal{M} be a matroid on $E(K_n)$ for some $n \ge d + 2$. Then \mathcal{M} is an **abstract** *d*-**rigidity matroid** if rank $M = dn - \binom{d+1}{2}$, and every $K_{d+2} \subseteq K_n$ is a circuit in \mathcal{M} (Nguyen 2010).

Conjecture [Graver, 1991]

(a) There is a unique maximal abstract *d*-rigidity matroid on $E(K_n)$ for all *d* and all $n \ge d + 2$. (b) This maximal abstract *d*-rigidity matroid is equal to $\mathcal{R}_d(K_n)$.

Graver verified his conjecture for d = 1, 2.

Whiteley showed that (b) is false for all $d \ge 4$ in 1996 by showing that the 'cofactor matroid' $C_{d-1}^{d-2}(K_n)$ is an abstract *d*-rigidity matroid and $C_{d-1}^{d-2}(K_n) \not\preceq \mathcal{R}_d(K_n)$ when $d \ge 4$ and $n \ge 12$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Let \mathcal{M} be a matroid on $E(K_n)$ for some $n \ge d + 2$. Then \mathcal{M} is an **abstract** *d*-**rigidity matroid** if rank $M = dn - \binom{d+1}{2}$, and every $K_{d+2} \subseteq K_n$ is a circuit in \mathcal{M} (Nguyen 2010).

Conjecture [Graver, 1991]

(a) There is a unique maximal abstract *d*-rigidity matroid on $E(K_n)$ for all *d* and all $n \ge d + 2$. (b) This maximal abstract *d*-rigidity matroid is equal to $\mathcal{R}_d(K_n)$.

Graver verified his conjecture for d = 1, 2.

Whiteley showed that (b) is false for all $d \ge 4$ in 1996 by showing that the 'cofactor matroid' $C_{d-1}^{d-2}(K_n)$ is an abstract *d*-rigidity matroid and $C_{d-1}^{d-2}(K_n) \not\preceq \mathcal{R}_d(K_n)$ when $d \ge 4$ and $n \ge 12$. We show $C_2^1(K_n)$ is the maximum abstract 3-rigidity matroid on $E(K_n)$ and characterise independence in this matroid.

The C_{d-1}^{d-2} -cofactor matroid

Let (G, p) be a framework in \mathbb{R}^2 and put $p(v_i) = (x_i, y_i)$ for $v_i \in V$. For $v_i, v_j \in E$ let $D_d(v_i, v_j) \in \mathbb{R}^d$ be defined by

 $D_d(v_i, v_j) = ((x_i - x_j)^{d-1}, (x_i - x_j)^{d-2}(y_i - y_j), \dots, (y_i - y_j)^{d-1}).$

The C_{d-1}^{d-2} -cofactor matroid

Let (G, p) be a framework in \mathbb{R}^2 and put $p(v_i) = (x_i, y_i)$ for $v_i \in V$. For $v_i, v_j \in E$ let $D_d(v_i, v_j) \in \mathbb{R}^d$ be defined by

$$D_d(v_i, v_j) = ((x_i - x_j)^{d-1}, (x_i - x_j)^{d-2}(y_i - y_j), \dots, (y_i - y_j)^{d-1}).$$

The C_{d-1}^{d-2} -cofactor matrix of (G, p) is the matrix $C_{d-1}^{d-2}(G, p)$ of size $|E| \times d|V|$ in which the row associated with the edge $e = v_i v_j$ with i < j is

$$e = v_i v_j \ \left[\begin{array}{ccc} v_i & v_j \\ 0 \dots 0 & D_d(v_i, v_j) & 0 \dots 0 & -D_d(v_i, v_j) & 0 \dots 0 \end{array} \right].$$

(1日) (1日) (1日)

The C_{d-1}^{d-2} -cofactor matroid

Let (G, p) be a framework in \mathbb{R}^2 and put $p(v_i) = (x_i, y_i)$ for $v_i \in V$. For $v_i, v_j \in E$ let $D_d(v_i, v_j) \in \mathbb{R}^d$ be defined by

$$D_d(v_i, v_j) = ((x_i - x_j)^{d-1}, (x_i - x_j)^{d-2}(y_i - y_j), \dots, (y_i - y_j)^{d-1}).$$

The C_{d-1}^{d-2} -cofactor matrix of (G, p) is the matrix $C_{d-1}^{d-2}(G, p)$ of size $|E| \times d|V|$ in which the row associated with the edge $e = v_i v_j$ with i < j is

$$e = v_i v_j \ \left[\begin{array}{ccc} v_i & v_j \\ 0 \dots 0 & D_d(v_i, v_j) & 0 \dots 0 & -D_d(v_i, v_j) & 0 \dots 0 \end{array} \right].$$

The C_{d-1}^{d-2} -cofactor matroid of G, $C_{d-1}^{d-2}(G)$, is the row matroid of the cofactor matrix $C_{d-1}^{d-2}(G, p)$ for any generic p. We have: $C_{d-1}^{d-2}(K_n) = \mathcal{R}_d(K_n)$ for d = 1, 2. $C_{d-1}^{d-2}(K_n) \neq \mathcal{R}_d(K_n)$ for $d \ge 4$ and $n \ge 12$.

A K_5 -sequence in K_n is a sequence of subgraphs $(K_5^1, K_5^2, \ldots, K_5^t)$ each of which is isomorphic to K_5 . It is proper if $K_5^i \not\subseteq \bigcup_{i=1}^{i-1} K_5^i$ for all $2 \le i \le t$.

Image: A Image: A

A K_5 -sequence in K_n is a sequence of subgraphs $(K_5^1, K_5^2, \ldots, K_5^t)$ each of which is isomorphic to K_5 . It is **proper** if $K_5^i \not\subseteq \bigcup_{i=1}^{i-1} K_5^i$ for all $2 \le i \le t$.

Theorem [Clinch,Tanigawa, BJ, 2019+]

(a) C_1^2 is the unique maximal abstract 3-rigidity matroid on $E(K_n)$; (b) $F \subseteq E(K_n)$ is independent in C_1^2 if and only if

$$|F'| \leq \left| \bigcup_{i=1}^{t} E(K_5^i) \right| - t$$

for all $F' \subseteq F$ and all proper K_5 -sequences $(K_5^1, K_5^2, \ldots, K_5^t)$ in K_n which cover F'.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

Let F = E(G), $F' = F \setminus \{e_1, e_2.e_3\}$ and $(K_5^1, K_5^2, \dots, K_5^7)$ be the 'obvious' proper K_5 -sequence which covers F'. We have

$$57 = |F'| > \left| \bigcup_{i=1}^{7} E(K_5^i) \right| - 7 = 56$$

so F is not independent in C_2^1 .

・ロト ・ 同ト ・ ヨト ・ ヨト