The maximal abstract 3-rigidity matroid

Bill Jackson
School of Mathematical Sciences
Queen Mary, University of London
England

GGTW, 12-14 August, 2019

Bar-Joint Frameworks

- A d-dimensional bar-joint framework is a pair (G, p), where $G=(V, E)$ is a graph and p is a map from V to \mathbb{R}^{d}.

Bar-Joint Frameworks

- A d-dimensional bar-joint framework is a pair (G, p), where $G=(V, E)$ is a graph and p is a map from V to \mathbb{R}^{d}.
- We consider the framework to be a straight line realization of G in \mathbb{R}^{d} in which the length of an edge $u v \in E$ is given by the Euclidean distance $\|p(u)-p(v)\|$ between the points $p(u)$ and $p(v)$.

Bar-Joint Frameworks

- A d-dimensional bar-joint framework is a pair (G, p), where $G=(V, E)$ is a graph and p is a map from V to \mathbb{R}^{d}.
- We consider the framework to be a straight line realization of G in \mathbb{R}^{d} in which the length of an edge $u v \in E$ is given by the Euclidean distance $\|p(u)-p(v)\|$ between the points $p(u)$ and $p(v)$.
- It is rigid if every continuous motion of the vertices of (G, p) in \mathbb{R}^{d}, which preserves the lengths of its edges, also preserves the distances between all pairs of vertices.)

Rigidity: Example

Figure: The 2-dimensional frameworks $\left(G, p_{0}\right)$ and (G, p_{1}) are not rigid since $\left(G, p_{1}\right)$ can be obtained from $\left(G, p_{0}\right)$ by a continuous motion in \mathbb{R}^{2} which preserves all edge lengths, but changes the distance between v_{1} and v_{3}.

Complexity

- It is NP-hard to determine whether a given d-dimensional framework (G, p) is rigid for $d \geq 2$ (Abbot 2008).

Complexity

- It is NP-hard to determine whether a given d-dimensional framework (G, p) is rigid for $d \geq 2$ (Abbot 2008).
- This problem becomes more tractable if we restrict attention to 'generic' frameworks (those for which the set of coordinates of all points $p(v), v \in V$, is algebraically independent over $\mathbb{Q})$. In this case the rigidity of (G, p) depends only on the graph G.

Complexity

- It is NP-hard to determine whether a given d-dimensional framework (G, p) is rigid for $d \geq 2$ (Abbot 2008).
- This problem becomes more tractable if we restrict attention to 'generic' frameworks (those for which the set of coordinates of all points $p(v), v \in V$, is algebraically independent over \mathbb{Q}). In this case the rigidity of (G, p) depends only on the graph G.
- We say that a graph G is rigid in \mathbb{R}^{d} if some (or equivalently every) generic realisation of G in \mathbb{R}^{d} is rigid.

Complexity

- It is NP-hard to determine whether a given d-dimensional framework (G, p) is rigid for $d \geq 2$ (Abbot 2008).
- This problem becomes more tractable if we restrict attention to 'generic' frameworks (those for which the set of coordinates of all points $p(v), v \in V$, is algebraically independent over \mathbb{Q}). In this case the rigidity of (G, p) depends only on the graph G.
- We say that a graph G is rigid in \mathbb{R}^{d} if some (or equivalently every) generic realisation of G in \mathbb{R}^{d} is rigid.
- The problem of characterising graphs which are rigid in \mathbb{R}^{d} is solved for $d=1$ (easy) and $d=2$ (Pollaczek-Geiringer 1927, Laman 1970), but is open for $d \geq 3$.

The rigidity of a given framework (G, p) is determined by the solution space of the system of quadratic equations

$$
\begin{equation*}
\left\|p_{t}(u)-p_{t}(v)\right\|^{2}=d_{u v} \text { for all } u v \in E \tag{1}
\end{equation*}
$$

where $p_{t}(u)$ is the position of u at time $t, p_{0}=p$, and $d_{u v}=\|p(u)-p(v)\|^{2}$.

The Rigidity Matrix

The rigidity of a given framework (G, p) is determined by the solution space of the system of quadratic equations

$$
\begin{equation*}
\left\|p_{t}(u)-p_{t}(v)\right\|^{2}=d_{u v} \text { for all } u v \in E \tag{1}
\end{equation*}
$$

where $p_{t}(u)$ is the position of u at time $t, p_{0}=p$, and $d_{u v}=\|p(u)-p(v)\|^{2}$.
Differentiating (1) wrt t and putting $t=0$, we obtain the following linear system of equations for the instantaneous velocities $\dot{p}(u)$ at time $t=0$.

$$
\begin{equation*}
(p(u)-p(v)) \cdot(\dot{p}(u)-\dot{p}(v))=0 \text { for all } u v \in E \tag{2}
\end{equation*}
$$

The Rigidity Matrix

The rigidity of a given framework (G, p) is determined by the solution space of the system of quadratic equations

$$
\begin{equation*}
\left\|p_{t}(u)-p_{t}(v)\right\|^{2}=d_{u v} \text { for all } u v \in E \tag{1}
\end{equation*}
$$

where $p_{t}(u)$ is the position of u at time $t, p_{0}=p$, and $d_{u v}=\|p(u)-p(v)\|^{2}$.
Differentiating (1) wrt t and putting $t=0$, we obtain the following linear system of equations for the instantaneous velocities $\dot{p}(u)$ at time $t=0$.

$$
\begin{equation*}
(p(u)-p(v)) \cdot(\dot{p}(u)-\dot{p}(v))=0 \text { for all } u v \in E \tag{2}
\end{equation*}
$$

The rigidity matrix $R(G, p)$ of (G, p) is the matrix of coefficients of (2). It is an $|E| \times d|V|$ matrix with rows indexed by E and sequences of d consecutive columns indexed by V.

Example

The row of $R(G, p)$ indexed by $e=u v \in E$ is given by $e=u v\left[\begin{array}{lllll}0 \ldots 0 & p(u)-p(v) & 0 \ldots 0 & p(v)-p(u) & 0 \ldots 0\end{array}\right]$.

Example

e_{1}
e_{2}
e_{3}
$e_{4}$$\left(\begin{array}{cccc}p\left(v_{1}\right)-p\left(v_{2}\right) & p\left(v_{2}\right)-p\left(v_{1}\right) & v_{3} & v_{4} \\ \mathbf{0} & p\left(v_{2}\right)-p\left(v_{3}\right) & p\left(v_{3}\right)-p\left(v_{2}\right) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & p\left(v_{3}\right)-p\left(v_{4}\right) & p\left(v_{4}\right)-p\left(v_{3}\right) \\ p\left(v_{1}\right)-p\left(v_{4}\right) & \mathbf{0} & \mathbf{0} & p\left(v_{4}\right)-p\left(v_{1}\right)\end{array}\right)$

Infinitesimal Motions

Each vector \dot{p} in the kernal of $R(G, p)$ is an infinitesimal motion of (G, p).

Infinitesimal Motions

Each vector \dot{p} in the kernal of $R(G, p)$ is an infinitesimal motion of (G, p).
Since each translation or rotation of \mathbb{R}^{d} gives rise to an infinitesimal motion of (G, p), the dimension of the kernal of $R(G, p)$ is at least $\binom{d+1}{2}$ whenever $p(V)$ affinely spans \mathbb{R}^{d}.

Infinitesimal Motions

Each vector \dot{p} in the kernal of $R(G, p)$ is an infinitesimal motion of (G, p).
Since each translation or rotation of \mathbb{R}^{d} gives rise to an infinitesimal motion of (G, p), the dimension of the kernal of $R(G, p)$ is at least $\binom{d+1}{2}$ whenever $p(V)$ affinely spans \mathbb{R}^{d}. Hence

$$
\operatorname{rank} R(G, p) \leq d|V|-\binom{d+1}{2}
$$

and (G, p) will be rigid if equality holds.

Infinitesimal Motions

Each vector \dot{p} in the kernal of $R(G, p)$ is an infinitesimal motion of (G, p).
Since each translation or rotation of \mathbb{R}^{d} gives rise to an infinitesimal motion of (G, p), the dimension of the kernal of $R(G, p)$ is at least $\binom{d+1}{2}$ whenever $p(V)$ affinely spans \mathbb{R}^{d}. Hence

$$
\operatorname{rank} R(G, p) \leq d|V|-\binom{d+1}{2}
$$

and (G, p) will be rigid if equality holds.
We say that (G, p) is infinitesimally rigid if

$$
\operatorname{rank} R(G, p)=\left\{\begin{array}{cc}
d|V|-\binom{d+1}{2} & \text { if }|V| \geq d+1 \\
\binom{|V|}{2} & \text { if }|V| \leq d+1
\end{array}\right.
$$

Generic Rigidity and Independence

Theorem [Gluck, 1975]

A generic d-dimensional framework is rigid if and only if it is infinitesimally rigid.

Generic Rigidity and Independence

Theorem [Gluck, 1975]

A generic d-dimensional framework is rigid if and only if it is infinitesimally rigid.

This implies that a generic framework (G, p) with $|V| \geq d+1$ is rigid if and only if $R(G, p)$ has rank $d|V|-\binom{d+1}{2}$. Hence:

Generic Rigidity and Independence

Theorem [Gluck, 1975]

A generic d-dimensional framework is rigid if and only if it is infinitesimally rigid.

This implies that a generic framework (G, p) with $|V| \geq d+1$ is rigid if and only if $R(G, p)$ has rank $d|V|-\binom{d+1}{2}$. Hence:

- The rigidity of (G, p) depends only on the graph G and the dimension d when (G, p) is generic.

Generic Rigidity and Independence

Theorem [Gluck, 1975]

A generic d-dimensional framework is rigid if and only if it is infinitesimally rigid.

This implies that a generic framework (G, p) with $|V| \geq d+1$ is rigid if and only if $R(G, p)$ has rank $d|V|-\binom{d+1}{2}$. Hence:

- The rigidity of (G, p) depends only on the graph G and the dimension d when (G, p) is generic.
- We can determine whether G is rigid in \mathbb{R}^{d} if we can determine when a given set of rows of $R(G, p)$ is linearly independent when (G, p) is generic.

Matroids

A matroid \mathcal{M} is a pair (E, \mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\emptyset \in \mathcal{I}$;
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and $|A|<|B|$ then there exists $x \in B \backslash A$ such that $A+x \in \mathcal{I}$.

Matroids

A matroid \mathcal{M} is a pair (E, \mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\emptyset \in \mathcal{I}$;
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and $|A|<|B|$ then there exists $x \in B \backslash A$ such that $A+x \in \mathcal{I}$.
$A \subseteq E$ is independent if $A \in \mathcal{I}$ and A is dependent if $A \notin \mathcal{I}$.
A is a circuit if it is a minimal dependent set. The rank of \mathcal{M} is the size of a largest independent set in \mathcal{M}.

Matroids

A matroid \mathcal{M} is a pair (E, \mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\emptyset \in \mathcal{I}$;
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and $|A|<|B|$ then there exists $x \in B \backslash A$ such that $A+x \in \mathcal{I}$.
$A \subseteq E$ is independent if $A \in \mathcal{I}$ and A is dependent if $A \notin \mathcal{I}$.
A is a circuit if it is a minimal dependent set. The rank of \mathcal{M} is the size of a largest independent set in \mathcal{M}.

We can define a partial order on the set of all matroids with the same groundset as follows. Given two matroids $\mathcal{M}_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$, we say $\mathcal{M}_{1} \preceq M_{2}$ if $\mathcal{I}_{1} \subseteq \mathcal{I}_{2}$.

The d-dimensional rigidity matroid $\mathcal{R}_{d}(G)$ of a graph $G=(V, E)$ is the matroid on E in which a set $F \subseteq E$ is independent if the rows of $R(G, p)$ indexed by F are linearly independent for some generic (G, p) in \mathbb{R}^{d}.

The d-dimensional rigidity matroid of G

The d-dimensional rigidity matroid $\mathcal{R}_{d}(G)$ of a graph $G=(V, E)$ is the matroid on E in which a set $F \subseteq E$ is independent if the rows of $R(G, p)$ indexed by F are linearly independent for some generic (G, p) in \mathbb{R}^{d}.

We say a graph $G \subseteq K_{n}$ is independent in \mathbb{R}^{d} if $E(G)$ is independent in $\mathcal{R}_{d}\left(K_{n}\right)$.

The d-dimensional rigidity matroid of G

The d-dimensional rigidity matroid $\mathcal{R}_{d}(G)$ of a graph $G=(V, E)$ is the matroid on E in which a set $F \subseteq E$ is independent if the rows of $R(G, p)$ indexed by F are linearly independent for some generic (G, p) in \mathbb{R}^{d}.

We say a graph $G \subseteq K_{n}$ is independent in \mathbb{R}^{d} if $E(G)$ is independent in $\mathcal{R}_{d}\left(K_{n}\right)$.

Note that if we can determine independence for all graphs in \mathbb{R}^{d} then we can determine rigidity for all graphs in \mathbb{R}^{d}.

Abstract d-rigidity matroids: Jack Graver 1991

Let \mathcal{M} be a matroid on $E\left(K_{n}\right)$ for some $n \geq d+2$. Then \mathcal{M} is an abstract d-rigidity matroid if rank $M=d n-\binom{d+1}{2}$, and every $K_{d+2} \subseteq K_{n}$ is a circuit in \mathcal{M} (Nguyen 2010).

Abstract d-rigidity matroids: Jack Graver 1991

Let \mathcal{M} be a matroid on $E\left(K_{n}\right)$ for some $n \geq d+2$. Then \mathcal{M} is an abstract d-rigidity matroid if rank $M=d n-\binom{d+1}{2}$, and every $K_{d+2} \subseteq K_{n}$ is a circuit in \mathcal{M} (Nguyen 2010).

Conjecture [Graver, 1991]

(a) There is a unique maximal abstract d-rigidity matroid on $E\left(K_{n}\right)$ for all d and all $n \geq d+2$.
(b) This maximal abstract d-rigidity matroid is equal to $\mathcal{R}_{d}\left(K_{n}\right)$.

Abstract d-rigidity matroids: Jack Graver 1991

Let \mathcal{M} be a matroid on $E\left(K_{n}\right)$ for some $n \geq d+2$. Then \mathcal{M} is an abstract d-rigidity matroid if rank $M=d n-\binom{d+1}{2}$, and every $K_{d+2} \subseteq K_{n}$ is a circuit in \mathcal{M} (Nguyen 2010).

Conjecture [Graver, 1991]

(a) There is a unique maximal abstract d-rigidity matroid on $E\left(K_{n}\right)$ for all d and all $n \geq d+2$.
(b) This maximal abstract d-rigidity matroid is equal to $\mathcal{R}_{d}\left(K_{n}\right)$.

Graver verified his conjecture for $d=1,2$.

Abstract d-rigidity matroids: Jack Graver 1991

Let \mathcal{M} be a matroid on $E\left(K_{n}\right)$ for some $n \geq d+2$. Then \mathcal{M} is an abstract d-rigidity matroid if rank $M=d n-\binom{d+1}{2}$, and every $K_{d+2} \subseteq K_{n}$ is a circuit in \mathcal{M} (Nguyen 2010).

Conjecture [Graver, 1991]

(a) There is a unique maximal abstract d-rigidity matroid on $E\left(K_{n}\right)$ for all d and all $n \geq d+2$.
(b) This maximal abstract d-rigidity matroid is equal to $\mathcal{R}_{d}\left(K_{n}\right)$.

Graver verified his conjecture for $d=1,2$.
Whiteley showed that (b) is false for all $d \geq 4$ in 1996 by showing that the 'cofactor matroid' $\mathcal{C}_{d-1}^{d-2}\left(K_{n}\right)$ is an abstract d-rigidity matroid and $\mathcal{C}_{d-1}^{d-2}\left(K_{n}\right) \npreceq \mathcal{R}_{d}\left(K_{n}\right)$ when $d \geq 4$ and $n \geq 12$.

Abstract d-rigidity matroids: Jack Graver 1991

Let \mathcal{M} be a matroid on $E\left(K_{n}\right)$ for some $n \geq d+2$. Then \mathcal{M} is an abstract d-rigidity matroid if rank $M=d n-\binom{d+1}{2}$, and every $K_{d+2} \subseteq K_{n}$ is a circuit in \mathcal{M} (Nguyen 2010).

Conjecture [Graver, 1991]

(a) There is a unique maximal abstract d-rigidity matroid on $E\left(K_{n}\right)$ for all d and all $n \geq d+2$.
(b) This maximal abstract d-rigidity matroid is equal to $\mathcal{R}_{d}\left(K_{n}\right)$.

Graver verified his conjecture for $d=1,2$.
Whiteley showed that (b) is false for all $d \geq 4$ in 1996 by showing that the 'cofactor matroid' $\mathcal{C}_{d-1}^{d-2}\left(K_{n}\right)$ is an abstract d-rigidity matroid and $\mathcal{C}_{d-1}^{d-2}\left(K_{n}\right) \npreceq \mathcal{R}_{d}\left(K_{n}\right)$ when $d \geq 4$ and $n \geq 12$.
We show $\mathcal{C}_{2}^{1}\left(K_{n}\right)$ is the maximum abstract 3-rigidity matroid on $E\left(K_{n}\right)$ and characterise independence in this matroid.

The C_{d-1}^{d-2}-cofactor matroid

Let (G, p) be a framework in \mathbb{R}^{2} and put $p\left(v_{i}\right)=\left(x_{i}, y_{i}\right)$ for $v_{i} \in V$. For $v_{i}, v_{j} \in E$ let $D_{d}\left(v_{i}, v_{j}\right) \in \mathbb{R}^{d}$ be defined by

$$
D_{d}\left(v_{i}, v_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{d-1},\left(x_{i}-x_{j}\right)^{d-2}\left(y_{i}-y_{j}\right), \ldots,\left(y_{i}-y_{j}\right)^{d-1}\right) .
$$

The C_{d-1}^{d-2}-cofactor matroid

Let (G, p) be a framework in \mathbb{R}^{2} and put $p\left(v_{i}\right)=\left(x_{i}, y_{i}\right)$ for $v_{i} \in V$. For $v_{i}, v_{j} \in E$ let $D_{d}\left(v_{i}, v_{j}\right) \in \mathbb{R}^{d}$ be defined by

$$
D_{d}\left(v_{i}, v_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{d-1},\left(x_{i}-x_{j}\right)^{d-2}\left(y_{i}-y_{j}\right), \ldots,\left(y_{i}-y_{j}\right)^{d-1}\right) .
$$

The C_{d-1}^{d-2}-cofactor matrix of (G, p) is the matrix $C_{d-1}^{d-2}(G, p)$ of size $|E| \times d|V|$ in which the row associated with the edge $e=v_{i} v_{j}$ with $i<j$ is

$$
e=v_{i} v_{j}\left[\begin{array}{ccccc}
0 \ldots 0 & D_{d}\left(v_{i}, v_{j}\right) & 0 \ldots 0 & -D_{d}\left(v_{i}, v_{j}\right) & 0 \ldots 0
\end{array}\right] .
$$

The C_{d-1}^{d-2}-cofactor matroid

Let (G, p) be a framework in \mathbb{R}^{2} and put $p\left(v_{i}\right)=\left(x_{i}, y_{i}\right)$ for $v_{i} \in V$. For $v_{i}, v_{j} \in E$ let $D_{d}\left(v_{i}, v_{j}\right) \in \mathbb{R}^{d}$ be defined by

$$
D_{d}\left(v_{i}, v_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{d-1},\left(x_{i}-x_{j}\right)^{d-2}\left(y_{i}-y_{j}\right), \ldots,\left(y_{i}-y_{j}\right)^{d-1}\right) .
$$

The C_{d-1}^{d-2}-cofactor matrix of (G, p) is the matrix $C_{d-1}^{d-2}(G, p)$ of size $|E| \times d|V|$ in which the row associated with the edge $e=v_{i} v_{j}$ with $i<j$ is

$$
e=v_{i} v_{j}\left[\begin{array}{cccccc}
0 \ldots 0 & D_{d}\left(v_{i}, v_{j}\right) & 0 \ldots 0 & -D_{d}\left(v_{i}, v_{j}\right) & 0 \ldots 0
\end{array}\right] .
$$

The C_{d-1}^{d-2}-cofactor matroid of $G, \mathcal{C}_{d-1}^{d-2}(G)$, is the row matroid of the cofactor matrix $C_{d-1}^{d-2}(G, p)$ for any generic p. We have: $\mathcal{C}_{d-1}^{d-2}\left(K_{n}\right)=\mathcal{R}_{d}\left(K_{n}\right)$ for $d=1,2$.
$\mathcal{C}_{d-1}^{d-2}\left(K_{n}\right) \neq \mathcal{R}_{d}\left(K_{n}\right)$ for $d \geq 4$ and $n \geq 12$.

The maximal abstract 3-rigidity matroid

A K_{5}-sequence in K_{n} is a sequence of subgraphs $\left(K_{5}^{1}, K_{5}^{2}, \ldots, K_{5}^{t}\right)$ each of which is isomorphic to K_{5}.
It is proper if $K_{5}^{i} \nsubseteq \bigcup_{j=1}^{i-1} K_{5}^{j}$ for all $2 \leq i \leq t$.

The maximal abstract 3-rigidity matroid

A K_{5}-sequence in K_{n} is a sequence of subgraphs $\left(K_{5}^{1}, K_{5}^{2}, \ldots, K_{5}^{t}\right)$ each of which is isomorphic to K_{5}. It is proper if $K_{5}^{i} \nsubseteq \bigcup_{j=1}^{i-1} K_{5}^{j}$ for all $2 \leq i \leq t$.

Theorem [Clinch, Tanigawa, BJ, 2019+]

(a) \mathcal{C}_{1}^{2} is the unique maximal abstract 3-rigidity matroid on $E\left(K_{n}\right)$;
(b) $F \subseteq E\left(K_{n}\right)$ is independent in \mathcal{C}_{1}^{2} if and only if

$$
\left|F^{\prime}\right| \leq\left|\bigcup_{i=1}^{t} E\left(K_{5}^{i}\right)\right|-t
$$

for all $F^{\prime} \subseteq F$ and all proper K_{5}-sequences $\left(K_{5}^{1}, K_{5}^{2}, \ldots, K_{5}^{t}\right)$ in K_{n} which cover F^{\prime}.

Example

Let $F=E(G), F^{\prime}=F \backslash\left\{e_{1}, e_{2} . e_{3}\right\}$ and $\left(K_{5}^{1}, K_{5}^{2}, \ldots, K_{5}^{7}\right)$ be the 'obvious' proper K_{5}-sequence which covers F^{\prime}. We have

$$
57=\left|F^{\prime}\right|>\left|\bigcup_{i=1}^{7} E\left(K_{5}^{i}\right)\right|-7=56
$$

so F is not independent in \mathcal{C}_{2}^{1}.

