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Berge-Fulkerson Conjecture

Conjecture (Berge-Fulkerson, 1971)

Every bridgeless cubic graph contains a family of SIX perfect matchings
that together cover each edge exactly twice.
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Introduction

Berge-Fulkerson Conjecture (1971)

Every bridgeless cubic graph contains a family of SIX perfect matchings
that together cover each edge exactly twice.

trivial for 3-edge-colourable cubic graphs

hard for bridgeless cubic graphs which are not 3-edge-colourable
(these graphs were named SNARKS by Martin Gardner).

Do we need to require a graph to be bridgeless?
I YES! (a bridge in a cubic graph belongs to every perfect matching)

ALTERNATIVE FORMULATION: if we double edges in a bridgeless
cubic graph, we obtain a 6-edge-colourable 6-regular multigraph
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Cyclic connectivity and oddness

Cyclic connectivity is the smallest number of edges which have to be
removed in order to obtain at least two components containing cycles
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k edges

Oddness ω(G ) of a bridgeless cubic graph G is the smallest number of odd
cycles in a 2-factor of G .

ω(G ) = 0 ⇔ G is 3-edge-colourable
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Conjecture (Jaeger, Swart’80)

There is no snark with cyclic connectivity greater than 6.

Oddness ω(G ) of a bridgeless cubic graph G is the smallest number of odd
cycles in a 2-factor of G .

ω(G ) = 0 ⇔ G is 3-edge-colourable
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Possible Minimal Counterexamples to some Outstanding
Conjectures

5−flow

5−cycle double

Conjecture

conj. girth cyclic
connectivity oddness

≥ 6
[GM, Steffen]

≥ 6
[Huck]

≥ 2≥ 4

≥ 4

[Kochol]
≥ 6≥ 11

[Kochol]

≥ 12
[Huck]

≥ 5Conjecture

cover C.

Berge-Fulkerson
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BF-colourings

Let G be a bridgeless cubic graph. Consider six perfect matchings of G ,
say {M1,M2,M3,M4,M5,M6}, such that every edge of G belongs to
exactly two of them.

These perfect matchings induce a map

φ : E (G ) → { 2-subsets of {1, 2, 3, 4, 5, 6}}
φ(e) = {i , j}, i 6= j

and
φ(e) ∩ φ(f ) = ∅

for all pairs of incident edges e, f .
We say that φ is a BF -colouring of G .
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BF-colourings of 4-poles
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4-edge-cut colourings

There are exactly 4 types of possible partions of the 4 dangling
edges along two disjoint perfect matchings:

AT4T3T2
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”Splitting” of a BF-colouring of a 4-edge-cut

there exist
(4
2

)
+ 4 = 10 types of BF-colourings of a 4-edge-cut

{AA,AT2,AT3,AT4,T2T2,T2T3,T2T4,T3T3,T3T4,T4T4}

we can associate to every 4-pole one of the 210 possible subsets of
types of colouring, BUT not all of them are achievable...
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Kempe chains
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Kempe chains
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Kempe chains
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Graph of BF-colourings
each 4-pole corresponds to a subgraph of M according to its admissible
BF-colourings
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4-pole → a subgraph of M
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Acyclic 4-poles

There are only SIX different acyclic 4-poles. In each of them, the
admissible BF-colourings correspond to one of the SIX dumbbell subgraphs
of M.
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Main result

Theorem

A smallest possible counterexample to the Berge-Fulkerson conjecture is
cyclically 5-edge-connected.

Sketch of the proof.

a smallest counterexample is cyclically 4-edge-connected

assume that G is a smallest counterexample and that G contains a
cycle separating 4-edge-cut S

subgraphs of M
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Sketch of the proof

M1 and M2 are edge-disjoint

both G1 and G2 admit a BF-colouring, otherwise we have a
contradiction with the minimality of G , therefore

neither Mi nor Mi contains a dumbbell subgraph
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No subgraph of Mi or Mi
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No subgraph of Mi or Mi

SMALLER COUNTEREXAMPLE!
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Sketch of the proof

M1 and M2 are edge-disjoint

both G1 and G2 admit a BF-colouring, otherwise we have a
contradiction with the minimality of G , therefore

neither Mi nor Mi contains a subgraph isomorphic to

no vertices of degree 1 in M1 nor M2 (Kempe chains)

no vertices of degree 2 in M1 nor M2 incident with a loop (Kempe
chains)

further (and last) forbidden configuration....
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a further forbidden configuration....
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no vertices of degree 1 in M1 nor M2 (Kempe chains)
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...CONTRADICTION!
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WORK IN PROGRESS: 5-edge-cuts

56 types of colourings

256 subsets

with the help of a computer we identified the subsets that are
I closed under 1 and 2 Kempe switches
I do not contain a subsets of colourings corresponding to an acyclic

5-pole
I their complement does not contain a subsets of colourings

corresponding to an acyclic 5-pole
I have in complement one of such sets

13 pairs left of sets of colourings
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Thank you for your attention!
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