Reduction of the Berge-Fulkerson Conjecture to cyclically 5-edge-connected snarks

Giuseppe Mazzuoccolo

University of Verona, Italy

$$
\text { GGTW } 2019
$$

joint work with Edita Máčajová (Comenius University, Bratislava)

Berge-Fulkerson Conjecture

Conjecture (Berge-Fulkerson, 1971)

Every bridgeless cubic graph contains a family of SIX perfect matchings that together cover each edge exactly twice.

Berge-Fulkerson Conjecture

Conjecture (Berge-Fulkerson, 1971)

Every bridgeless cubic graph contains a family of SIX perfect matchings that together cover each edge exactly twice.

Introduction

Berge-Fulkerson Conjecture (1971)

Every bridgeless cubic graph contains a family of SIX perfect matchings that together cover each edge exactly twice.

Introduction

Berge-Fulkerson Conjecture (1971)

Every bridgeless cubic graph contains a family of SIX perfect matchings that together cover each edge exactly twice.

- trivial for 3-edge-colourable cubic graphs

Introduction

Berge-Fulkerson Conjecture (1971)

Every bridgeless cubic graph contains a family of SIX perfect matchings that together cover each edge exactly twice.

- trivial for 3-edge-colourable cubic graphs
- hard for bridgeless cubic graphs which are not 3-edge-colourable (these graphs were named SNARKS by Martin Gardner).

Introduction

Berge-Fulkerson Conjecture (1971)

Every bridgeless cubic graph contains a family of SIX perfect matchings that together cover each edge exactly twice.

- trivial for 3-edge-colourable cubic graphs
- hard for bridgeless cubic graphs which are not 3-edge-colourable (these graphs were named SNARKS by Martin Gardner).
- Do we need to require a graph to be bridgeless?

Introduction

Berge-Fulkerson Conjecture (1971)

Every bridgeless cubic graph contains a family of SIX perfect matchings that together cover each edge exactly twice.

- trivial for 3-edge-colourable cubic graphs
- hard for bridgeless cubic graphs which are not 3-edge-colourable (these graphs were named SNARKS by Martin Gardner).
- Do we need to require a graph to be bridgeless?
- YES! (a bridge in a cubic graph belongs to every perfect matching)

Introduction

Berge-Fulkerson Conjecture (1971)

Every bridgeless cubic graph contains a family of SIX perfect matchings that together cover each edge exactly twice.

- trivial for 3-edge-colourable cubic graphs
- hard for bridgeless cubic graphs which are not 3-edge-colourable (these graphs were named SNARKS by Martin Gardner).
- Do we need to require a graph to be bridgeless?
- YES! (a bridge in a cubic graph belongs to every perfect matching)
- ALTERNATIVE FORMULATION: if we double edges in a bridgeless cubic graph, we obtain a 6-edge-colourable 6-regular multigraph

Cyclic connectivity and oddness

Cyclic connectivity is the smallest number of edges which have to be removed in order to obtain at least two components containing cycles

Cyclic connectivity and oddness

Cyclic connectivity is the smallest number of edges which have to be removed in order to obtain at least two components containing cycles

Conjecture (Jaeger, Swart'80)

There is no snark with cyclic connectivity greater than 6 .

Cyclic connectivity and oddness

Cyclic connectivity is the smallest number of edges which have to be removed in order to obtain at least two components containing cycles

Oddness $\omega(G)$ of a bridgeless cubic graph G is the smallest number of odd cycles in a 2 -factor of G.

Cyclic connectivity and oddness

Cyclic connectivity is the smallest number of edges which have to be removed in order to obtain at least two components containing cycles

Oddness $\omega(G)$ of a bridgeless cubic graph G is the smallest number of odd cycles in a 2 -factor of G.

- $\omega(G)=0 \Leftrightarrow G$ is 3-edge-colourable

Possible Minimal Counterexamples to some Outstanding Conjectures

conj.	girth	cyclic connectivity	oddness
5-flow Conjecture	≥ 11 [Kochol]	≥ 6 [Kochol]	≥ 6 [GM, Steffen]
5-cycle double cover C.	≥ 12 [Huck]	≥ 4	≥ 6 [Huck]
Berge-Fulkerson Conjecture	≥ 5	≥ 4	≥ 2

Possible Minimal Counterexamples to some Outstanding Conjectures

conj.	girth	cyclic connectivity	oddness
5-flow Conjecture	≥ 11 [Kochol]	≥ 6 [Kochol]	≥ 6 [GM, Steffen]
5-cycle double cover C.	≥ 12 [Huck]	≥ 4	≥ 6 [Huck]
Berge-Fulkerson Conjecture	≥ 5	≥ 5	≥ 2

BF-colourings

Let G be a bridgeless cubic graph. Consider six perfect matchings of G, say $\left\{M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}\right\}$, such that every edge of G belongs to exactly two of them.

BF-colourings

Let G be a bridgeless cubic graph. Consider six perfect matchings of G, say $\left\{M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}\right\}$, such that every edge of G belongs to exactly two of them.
These perfect matchings induce a map

$$
\begin{gathered}
\phi: E(G) \rightarrow\{\text { 2-subsets of }\{1,2,3,4,5,6\}\} \\
\phi(e)=\{i, j\}, i \neq j
\end{gathered}
$$

and

$$
\phi(e) \cap \phi(f)=\emptyset
$$

for all pairs of incident edges e, f.

BF-colourings

Let G be a bridgeless cubic graph. Consider six perfect matchings of G, say $\left\{M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}\right\}$, such that every edge of G belongs to exactly two of them.
These perfect matchings induce a map

$$
\begin{gathered}
\phi: E(G) \rightarrow\{\text { 2-subsets of }\{1,2,3,4,5,6\}\} \\
\phi(e)=\{i, j\}, i \neq j
\end{gathered}
$$

and

$$
\phi(e) \cap \phi(f)=\emptyset
$$

for all pairs of incident edges e, f.
We say that ϕ is a $B F$-colouring of G.

BF-colourings of 4-poles

4-edge-cut colourings

There are exactly 4 types of possible partions of the 4 dangling edges along two disjoint perfect matchings:

"Splitting" of a BF-colouring of a 4-edge-cut

"Splitting" of a BF-colouring of a 4-edge-cut

12
12
12
12
AA
"Splitting" of a BF-colouring of a 4-edge-cut

| 12 | | 12 |
| :--- | :--- | :--- | :--- |
| 12 | | 12 |
| 12 | | 13 |
| 12 | | 13 |
| $A A$ | | $A T_{2}$ |

"Splitting" of a BF-colouring of a 4-edge-cut

| 12 | 12 | 1 |
| :--- | :--- | :--- | :--- |
| 12 | 12 | 1 |
| 12 | 13 | |
| 12 | 13 | |
| $A A$ | $A T_{2}$ | |

"Splitting" of a BF-colouring of a 4-edge-cut

| 12 | 12 | 1 |
| :--- | :--- | :--- | :--- |
| 12 | 12 | 1 |
| 12 | 13 | 2 |
| 12 | 13 | 3 |
| $A A$ | $A T_{2}$ | |

"Splitting" of a BF-colouring of a 4-edge-cut

12	12	12
12	12	13
12	13	2
12	13	3
$A A$	$A T_{2}$	

"Splitting" of a BF-colouring of a 4-edge-cut

| 12 | 12 | 12 |
| :--- | :--- | :--- | :--- |
| 12 | 12 | 13 |
| 12 | 13 | 24 |
| 12 | 13 | 34 |
| $A A$ | $A T_{2}$ | |

"Splitting" of a BF-colouring of a 4-edge-cut

12	12	12			
12	12	13			
12	13				
12	13	24			
$A A$	$A T_{2}$				12
:---					
13					
42					
43					

"Splitting" of a BF-colouring of a 4-edge-cut

12	12	12			
12	12	13			
12	13				
12	13	24			
$A A$	$A T_{2}$				12
:---					
13					
42					
43					

"Splitting" of a BF-colouring of a 4-edge-cut

12	12	12	12
12	12	13	13
12	13	24	42
12	13	34	43
AA	$A T_{2}$		$T_{2} T_{3}$

- there exist $\binom{4}{2}+4=10$ types of BF -colourings of a 4 -edge-cut

$$
\left\{A A, A T_{2}, A T_{3}, A T_{4}, T_{2} T_{2}, T_{2} T_{3}, T_{2} T_{4}, T_{3} T_{3}, T_{3} T_{4}, T_{4} T_{4}\right\}
$$

"Splitting" of a BF-colouring of a 4-edge-cut

12	12	12			
12	12	13			
12	13	24			
12	13	34			
$A A$	$A T_{2}$				12
:---					
13					
42					
43					

- there exist $\binom{4}{2}+4=10$ types of BF -colourings of a 4-edge-cut

$$
\left\{A A, A T_{2}, A T_{3}, A T_{4}, T_{2} T_{2}, T_{2} T_{3}, T_{2} T_{4}, T_{3} T_{3}, T_{3} T_{4}, T_{4} T_{4}\right\}
$$

- we can associate to every 4 -pole one of the 2^{10} possible subsets of types of colouring, BUT

"Splitting" of a BF-colouring of a 4-edge-cut

12	12	12			
12	12	13			
12	13	24			
12	13	34			
$A A$	$A T_{2}$				12
:---					
13					
42					
43					

- there exist $\binom{4}{2}+4=10$ types of BF-colourings of a 4-edge-cut

$$
\left\{A A, A T_{2}, A T_{3}, A T_{4}, T_{2} T_{2}, T_{2} T_{3}, T_{2} T_{4}, T_{3} T_{3}, T_{3} T_{4}, T_{4} T_{4}\right\}
$$

- we can associate to every 4 -pole one of the 2^{10} possible subsets of types of colouring, BUT not all of them are achievable...

Kempe chains

Kempe chains

Kempe chains

Kempe chains

Kempe chains

Kempe chains

Graph of BF-colourings

each 4-pole corresponds to a subgraph of M according to its admissible BF-colourings

4-pole \rightarrow a subgraph of M

4-pole \rightarrow a subgraph of M

Acyclic 4-poles

There are only SIX different acyclic 4-poles. In each of them, the admissible BF-colourings correspond to one of the SIX dumbbell subgraphs of M.

Main result

Theorem
A smallest possible counterexample to the Berge-Fulkerson conjecture is cyclically 5-edge-connected.

Sketch of the proof.

Main result

Theorem
A smallest possible counterexample to the Berge-Fulkerson conjecture is cyclically 5-edge-connected.

Sketch of the proof.

- a smallest counterexample is cyclically 4-edge-connected

Main result

Theorem
A smallest possible counterexample to the Berge-Fulkerson conjecture is cyclically 5-edge-connected.

Sketch of the proof.

- a smallest counterexample is cyclically 4-edge-connected
- assume that G is a smallest counterexample and that G contains a cycle separating 4-edge-cut S

Main result

Theorem
A smallest possible counterexample to the Berge-Fulkerson conjecture is cyclically 5-edge-connected.

Sketch of the proof.

- a smallest counterexample is cyclically 4-edge-connected
- assume that G is a smallest counterexample and that G contains a cycle separating 4-edge-cut S

Main result

Theorem
A smallest possible counterexample to the Berge-Fulkerson conjecture is cyclically 5-edge-connected.

Sketch of the proof.

- a smallest counterexample is cyclically 4-edge-connected
- assume that G is a smallest counterexample and that G contains a cycle separating 4-edge-cut S

Sketch of the proof

- M_{1} and M_{2} are edge-disjoint

Sketch of the proof

- M_{1} and M_{2} are edge-disjoint

Sketch of the proof

- M_{1} and M_{2} are edge-disjoint

Sketch of the proof

- M_{1} and M_{2} are edge-disjoint

Sketch of the proof

- M_{1} and M_{2} are edge-disjoint
- both G_{1} and G_{2} admit a BF-colouring, otherwise we have a contradiction with the minimality of G, therefore

Sketch of the proof

- M_{1} and M_{2} are edge-disjoint
- both G_{1} and G_{2} admit a BF-colouring, otherwise we have a contradiction with the minimality of G, therefore

Sketch of the proof

- M_{1} and M_{2} are edge-disjoint
- both G_{1} and G_{2} admit a BF-colouring, otherwise we have a contradiction with the minimality of G, therefore
- neither M_{i} nor $\overline{M_{i}}$ contains a dumbbell subgraph

No \bigcirc subgraph of M_{i} or $\overline{M_{i}}$

SMALLER COUNTEREXAMPLE!

Sketch of the proof

- M_{1} and M_{2} are edge-disjoint
- both G_{1} and G_{2} admit a BF-colouring, otherwise we have a contradiction with the minimality of G, therefore
- neither M_{i} nor $\overline{M_{i}}$ contains a subgraph isomorphic to

Sketch of the proof

- M_{1} and M_{2} are edge-disjoint
- both G_{1} and G_{2} admit a BF-colouring, otherwise we have a contradiction with the minimality of G, therefore
- neither M_{i} nor $\overline{M_{i}}$ contains a subgraph isomorphic to

- no vertices of degree 1 in M_{1} nor M_{2} (Kemp chains)

Sketch of the proof

- M_{1} and M_{2} are edge-disjoint
- both G_{1} and G_{2} admit a BF-colouring, otherwise we have a contradiction with the minimality of G, therefore
- neither M_{i} nor $\overline{M_{i}}$ contains a subgraph isomorphic to

- no vertices of degree 1 in M_{1} nor M_{2} (Kempe chains)
- no vertices of degree 2 in M_{1} nor M_{2} incident with a loop (Kempe chains)
- further (and last) forbidden configuration....

a further forbidden configuration....

a further forbidden configuration....

Sketch of the proof

- M_{1} and M_{2} are edge-disjoint
- both G_{1} and G_{2} admit a BF-colouring, otherwise we have a contradiction with the minimality of G, therefore
- neither M_{i} nor $\overline{M_{i}}$ contains a subgraph isomorphic to

- no vertices of degree 1 in M_{1} nor M_{2} (Kempe chains)
- no vertices of degree 2 in M_{1} nor M_{2} incident with a loop (Kempe chains)
- further forbidden configuration....

Sketch of the proof

- M_{1} and M_{2} are edge-disjoint
- both G_{1} and G_{2} admit a BF-colouring, otherwise we have a contradiction with the minimality of G, therefore
- neither M_{i} nor $\overline{M_{i}}$ contains a subgraph isomorphic to

- no vertices of degree 1 in M_{1} nor M_{2} (Kempe chains)
- no vertices of degree 2 in M_{1} nor M_{2} incident with a loop (Kempe chains)
- further forbidden configuration....

WORK IN PROGRESS: 5-edge-cuts

- 56 types of colourings

WORK IN PROGRESS: 5-edge-cuts

- 56 types of colourings
- 2^{56} subsets

WORK IN PROGRESS: 5-edge-cuts

- 56 types of colourings
- 2^{56} subsets
- with the help of a computer we identified the subsets that are

WORK IN PROGRESS: 5-edge-cuts

- 56 types of colourings
- 2^{56} subsets
- with the help of a computer we identified the subsets that are
- closed under 1 and 2 Kempe switches

WORK IN PROGRESS: 5-edge-cuts

- 56 types of colourings
- 2^{56} subsets
- with the help of a computer we identified the subsets that are
- closed under 1 and 2 Kempe switches
- do not contain a subsets of colourings corresponding to an acyclic 5 -pole

WORK IN PROGRESS: 5-edge-cuts

- 56 types of colourings
- 2^{56} subsets
- with the help of a computer we identified the subsets that are
- closed under 1 and 2 Kempe switches
- do not contain a subsets of colourings corresponding to an acyclic 5 -pole
- their complement does not contain a subsets of colourings corresponding to an acyclic 5-pole

WORK IN PROGRESS: 5-edge-cuts

- 56 types of colourings
- 2^{56} subsets
- with the help of a computer we identified the subsets that are
- closed under 1 and 2 Kempe switches
- do not contain a subsets of colourings corresponding to an acyclic 5 -pole
- their complement does not contain a subsets of colourings corresponding to an acyclic 5-pole
- have in complement one of such sets

WORK IN PROGRESS: 5-edge-cuts

- 56 types of colourings
- 2^{56} subsets
- with the help of a computer we identified the subsets that are
- closed under 1 and 2 Kempe switches
- do not contain a subsets of colourings corresponding to an acyclic 5-pole
- their complement does not contain a subsets of colourings corresponding to an acyclic 5-pole
- have in complement one of such sets
- 13 pairs left of sets of colourings

https://combinatorics2020.unibs.it

List of plenary speakers

- Herivelto BORGES - University of San Paulo (Brasil)
- Bence CSAJBOK - Eotvos Lorand University (Hungary)
- Nicola DURANTE - University of Naples "Federico II" (Italy)
- Michel LAVRAUW - Sabanci University (Turkey)
- Patric R. J. OSTERGARD - Aalto University (Finland)
- Tomaz PISANSKI - Primorska University (Slovenia)
- Violet R. SYROTIUK - Arizona State University (USA)
- Ian WANLESS - Monash University (Australia)

Thank you for your attention!

