# Reduction of the Berge-Fulkerson Conjecture to cyclically 5-edge-connected snarks

Giuseppe Mazzuoccolo

### University of Verona, Italy

#### GGTW 2019

joint work with Edita Máčajová (Comenius University, Bratislava)

# Berge-Fulkerson Conjecture

### Conjecture (Berge-Fulkerson, 1971)



# Berge-Fulkerson Conjecture

### Conjecture (Berge-Fulkerson, 1971)



### Berge-Fulkerson Conjecture (1971)

### Berge-Fulkerson Conjecture (1971)

Every bridgeless cubic graph contains a family of SIX perfect matchings that together cover each edge exactly twice.

• trivial for 3-edge-colourable cubic graphs

### Berge-Fulkerson Conjecture (1971)

- trivial for 3-edge-colourable cubic graphs
- hard for bridgeless cubic graphs which are not 3-edge-colourable (these graphs were named SNARKS by Martin Gardner).

### Berge-Fulkerson Conjecture (1971)

- trivial for 3-edge-colourable cubic graphs
- hard for bridgeless cubic graphs which are not 3-edge-colourable (these graphs were named SNARKS by Martin Gardner).
- Do we need to require a graph to be bridgeless?

### Berge-Fulkerson Conjecture (1971)

- trivial for 3-edge-colourable cubic graphs
- hard for bridgeless cubic graphs which are not 3-edge-colourable (these graphs were named SNARKS by Martin Gardner).
- Do we need to require a graph to be bridgeless?
  - YES! (a bridge in a cubic graph belongs to every perfect matching)

### Berge-Fulkerson Conjecture (1971)

- trivial for 3-edge-colourable cubic graphs
- hard for bridgeless cubic graphs which are not 3-edge-colourable (these graphs were named SNARKS by Martin Gardner).
- Do we need to require a graph to be bridgeless?
  - YES! (a bridge in a cubic graph belongs to every perfect matching)
- ALTERNATIVE FORMULATION: if we double edges in a bridgeless cubic graph, we obtain a 6-edge-colourable 6-regular multigraph

Cyclic connectivity is the smallest number of edges which have to be removed in order to obtain at least two components containing cycles



Cyclic connectivity is the smallest number of edges which have to be removed in order to obtain at least two components containing cycles



Conjecture (Jaeger, Swart'80)

There is no snark with cyclic connectivity greater than 6.

Cyclic connectivity is the smallest number of edges which have to be removed in order to obtain at least two components containing cycles



Oddness  $\omega(G)$  of a bridgeless cubic graph G is the smallest number of odd cycles in a 2-factor of G.

Cyclic connectivity is the smallest number of edges which have to be removed in order to obtain at least two components containing cycles



Oddness  $\omega(G)$  of a bridgeless cubic graph G is the smallest number of odd cycles in a 2-factor of G.

• 
$$\omega(G) = 0 \Leftrightarrow G$$
 is 3-edge-colourable

# Possible Minimal Counterexamples to some Outstanding Conjectures

| conj.                         | girth                 | cyclic<br>connectivity | oddness               |
|-------------------------------|-----------------------|------------------------|-----------------------|
| 5–flow<br>Conjecture          | $\geq 11$<br>[Kochol] | $\geq 6$ [Kochol]      | $\geq 6$ [GM, Steffen |
| 5–cycle double<br>cover C.    | ≥ 12<br>[Huck]        | ≥ 4                    | $\geq 6$ [Huck]       |
| Berge-Fulkerson<br>Conjecture | ≥ 5                   | ≥4                     | $\geq 2$              |

# Possible Minimal Counterexamples to some Outstanding Conjectures

| conj.                         | girth                 | cyclic<br>connectivity | oddness               |
|-------------------------------|-----------------------|------------------------|-----------------------|
| 5–flow<br>Conjecture          | $\geq 11$<br>[Kochol] | $\geq 6$ [Kochol]      | $\geq 6$ [GM, Steffen |
| 5–cycle double<br>cover C.    | ≥ 12<br>[Huck]        | ≥ 4                    | $\geq 6$ [Huck]       |
| Berge-Fulkerson<br>Conjecture | ≥ 5                   | ≥ 5                    | $\geq 2$              |

### **BF-colourings**

Let G be a bridgeless cubic graph. Consider six perfect matchings of G, say  $\{M_1, M_2, M_3, M_4, M_5, M_6\}$ , such that every edge of G belongs to exactly two of them.

### **BF-colourings**

Let G be a bridgeless cubic graph. Consider six perfect matchings of G, say  $\{M_1, M_2, M_3, M_4, M_5, M_6\}$ , such that every edge of G belongs to exactly two of them.

These perfect matchings induce a map

$$\phi : E(G) \rightarrow \{$$
 2-subsets of  $\{1, 2, 3, 4, 5, 6\}\}$   
 $\phi(e) = \{i, j\}, i \neq j$ 

and

 $\phi(e) \cap \phi(f) = \emptyset$ 

for all pairs of incident edges e, f.

### **BF-colourings**

Let G be a bridgeless cubic graph. Consider six perfect matchings of G, say  $\{M_1, M_2, M_3, M_4, M_5, M_6\}$ , such that every edge of G belongs to exactly two of them.

These perfect matchings induce a map

$$\phi : E(G) \rightarrow \{$$
 2-subsets of  $\{1, 2, 3, 4, 5, 6\}\}$   
 $\phi(e) = \{i, j\}, i \neq j$ 

and

 $\phi(e) \cap \phi(f) = \emptyset$ 

for all pairs of incident edges e, f. We say that  $\phi$  is a *BF*-colouring of *G*.















There are exactly 4 types of possible partions of the 4 dangling edges along two disjoint perfect matchings:

| $T_2$ | $T_3$ | $T_{A}$ | А |
|-------|-------|---------|---|
| - 2   | - J   | - 4     |   |

- 1 2 1 2 1
- 1 2 1 2 1
- 1 2 1 3
- 1 2 1 3
- $AA = AT_2$

 1
 2
 1
 2
 1

 1
 2
 1
 2
 1

 1
 2
 1
 3
 2

 1
 2
 1
 3
 3

 $AT_2$ 

AA

- 1 2 1 2 1 2
- 1 2 1 2 1 3
- 1 2 1 3 2 1 2 1 3 3
- $AA = AT_2$

- 1 2
   1 2
   1 2

   1 2
   1 2
   1 3
- 1 2
   1 3
   2 4

   1 2
   1 3
   3 4
- $AA AT_2$







• there exist  $\binom{4}{2} + 4 = 10$  types of BF-colourings of a 4-edge-cut { $AA, AT_2, AT_3, AT_4, T_2T_2, T_2T_3, T_2T_4, T_3T_3, T_3T_4, T_4T_4$ }
### "Splitting" of a BF-colouring of a 4-edge-cut



• there exist  $\binom{4}{2} + 4 = 10$  types of BF-colourings of a 4-edge-cut

 $\{AA, AT_2, AT_3, AT_4, T_2T_2, T_2T_3, T_2T_4, T_3T_3, T_3T_4, T_4T_4\}$ 

 we can associate to every 4-pole one of the 2<sup>10</sup> possible subsets of types of colouring, BUT

### "Splitting" of a BF-colouring of a 4-edge-cut



• there exist  $\binom{4}{2} + 4 = 10$  types of BF-colourings of a 4-edge-cut

 $\{AA, AT_2, AT_3, AT_4, T_2T_2, T_2T_3, T_2T_4, T_3T_3, T_3T_4, T_4T_4\}$ 

• we can associate to every 4-pole one of the 2<sup>10</sup> possible subsets of types of colouring, BUT not all of them are achievable...











## Graph of BF-colourings

each 4-pole corresponds to a subgraph of M according to its admissible BF-colourings



4-pole  $\rightarrow$  a subgraph of M



4-pole  $\rightarrow$  a subgraph of M



### Acyclic 4-poles

There are only SIX different acyclic 4-poles. In each of them, the admissible BF-colourings correspond to one of the SIX dumbbell subgraphs of M.



#### Theorem

A smallest possible counterexample to the Berge-Fulkerson conjecture is cyclically 5-edge-connected.

#### Theorem

A smallest possible counterexample to the Berge-Fulkerson conjecture is cyclically 5-edge-connected.

Sketch of the proof.

• a smallest counterexample is cyclically 4-edge-connected

#### Theorem

A smallest possible counterexample to the Berge-Fulkerson conjecture is cyclically 5-edge-connected.

- a smallest counterexample is cyclically 4-edge-connected
- assume that G is a smallest counterexample and that G contains a cycle separating 4-edge-cut S



#### Theorem

A smallest possible counterexample to the Berge-Fulkerson conjecture is cyclically 5-edge-connected.

- a smallest counterexample is cyclically 4-edge-connected
- assume that G is a smallest counterexample and that G contains a cycle separating 4-edge-cut S



#### Theorem

A smallest possible counterexample to the Berge-Fulkerson conjecture is cyclically 5-edge-connected.

- a smallest counterexample is cyclically 4-edge-connected
- assume that G is a smallest counterexample and that G contains a cycle separating 4-edge-cut S











- M<sub>1</sub> and M<sub>2</sub> are edge-disjoint
- both  $G_1$  and  $G_2$  admit a BF-colouring, otherwise we have a contradiction with the minimality of G, therefore

- M<sub>1</sub> and M<sub>2</sub> are edge-disjoint
- both  $G_1$  and  $G_2$  admit a BF-colouring, otherwise we have a contradiction with the minimality of G, therefore

- M<sub>1</sub> and M<sub>2</sub> are edge-disjoint
- both  $G_1$  and  $G_2$  admit a BF-colouring, otherwise we have a contradiction with the minimality of G, therefore
- neither  $M_i$  nor  $\overline{M_i}$  contains a dumbbell subgraph  $\bigcirc$





No  $\bigcirc$  subgraph of  $M_i$  or  $\overline{M_i}$ 













- $M_1$  and  $M_2$  are edge-disjoint
- both  $G_1$  and  $G_2$  admit a BF-colouring, otherwise we have a contradiction with the minimality of G, therefore
- neither  $M_i$  nor  $\overline{M_i}$  contains a subgraph isomorphic to  $\bigcirc$

- $M_1$  and  $M_2$  are edge-disjoint
- both  $G_1$  and  $G_2$  admit a BF-colouring, otherwise we have a contradiction with the minimality of G, therefore
- neither  $M_i$  nor  $\overline{M_i}$  contains a subgraph isomorphic to
- no vertices of degree 1 in  $M_1$  nor  $M_2$  (Kempe chains)
### Sketch of the proof

- M<sub>1</sub> and M<sub>2</sub> are edge-disjoint
- both *G*<sub>1</sub> and *G*<sub>2</sub> admit a BF-colouring, otherwise we have a contradiction with the minimality of *G*, therefore
- neither  $M_i$  nor  $\overline{M_i}$  contains a subgraph isomorphic to  $\zeta$
- no vertices of degree 1 in  $M_1$  nor  $M_2$  (Kempe chains)
- no vertices of degree 2 in  $M_1$  nor  $M_2$  incident with a loop (Kempe chains)
- further (and last) forbidden configuration....

a further forbidden configuration....



a further forbidden configuration....



#### Sketch of the proof

#### • M<sub>1</sub> and M<sub>2</sub> are edge-disjoint

- both *G*<sub>1</sub> and *G*<sub>2</sub> admit a BF-colouring, otherwise we have a contradiction with the minimality of *G*, therefore
- neither  $M_i$  nor  $\overline{M_i}$  contains a subgraph isomorphic to  $\bigcirc$
- no vertices of degree 1 in  $M_1$  nor  $M_2$  (Kempe chains)
- no vertices of degree 2 in  $M_1$  nor  $M_2$  incident with a loop (Kempe chains)
- further forbidden configuration....

#### Sketch of the proof

#### • M<sub>1</sub> and M<sub>2</sub> are edge-disjoint

- both *G*<sub>1</sub> and *G*<sub>2</sub> admit a BF-colouring, otherwise we have a contradiction with the minimality of *G*, therefore
- neither  $M_i$  nor  $\overline{M_i}$  contains a subgraph isomorphic to  $\bigcirc$
- no vertices of degree 1 in  $M_1$  nor  $M_2$  (Kempe chains)
- no vertices of degree 2 in M<sub>1</sub> nor M<sub>2</sub> incident with a loop (Kempe chains)
- further forbidden configuration....

#### ...CONTRADICTION!

• 56 types of colourings

- 56 types of colourings
- 2<sup>56</sup> subsets

- 56 types of colourings
- 2<sup>56</sup> subsets
- with the help of a computer we identified the subsets that are

- 56 types of colourings
- 2<sup>56</sup> subsets
- with the help of a computer we identified the subsets that are
  - closed under 1 and 2 Kempe switches

- 56 types of colourings
- 2<sup>56</sup> subsets
- with the help of a computer we identified the subsets that are
  - closed under 1 and 2 Kempe switches
  - do not contain a subsets of colourings corresponding to an acyclic 5-pole

- 56 types of colourings
- 2<sup>56</sup> subsets
- with the help of a computer we identified the subsets that are
  - closed under 1 and 2 Kempe switches
  - do not contain a subsets of colourings corresponding to an acyclic 5-pole
  - their complement does not contain a subsets of colourings corresponding to an acyclic 5-pole

- 56 types of colourings
- 2<sup>56</sup> subsets
- with the help of a computer we identified the subsets that are
  - closed under 1 and 2 Kempe switches
  - do not contain a subsets of colourings corresponding to an acyclic 5-pole
  - their complement does not contain a subsets of colourings corresponding to an acyclic 5-pole
  - have in complement one of such sets

- 56 types of colourings
- 2<sup>56</sup> subsets
- with the help of a computer we identified the subsets that are
  - closed under 1 and 2 Kempe switches
  - do not contain a subsets of colourings corresponding to an acyclic 5-pole
  - their complement does not contain a subsets of colourings corresponding to an acyclic 5-pole
  - have in complement one of such sets
- 13 pairs left of sets of colourings



#### https://combinatorics2020.unibs.it

#### List of plenary speakers

- Herivelto BORGES University of San Paulo (Brasil)
- Bence CSAJBOK Eotvos Lorand University (Hungary)
- Nicola DURANTE University of Naples "Federico II" (Italy)
- Michel LAVRAUW Sabanci University (Turkey)
- Patric R. J. OSTERGARD Aalto University (Finland)
- Tomaz PISANSKI Primorska University (Slovenia)
- Violet R. SYROTIUK Arizona State University (USA)
- Ian WANLESS Monash University (Australia)

Thank you for your attention!