Graphs with no short cycle covers

Edita Máčajová

Comenius University, Bratislava

Ghent, August 2019
joint work with Martin Škoviera

Cycle cover

- cycle - a graph with every vertex of even degree

Cycle cover

- cycle - a graph with every vertex of even degree
- cycle cover of a bridgeless graph G - a collection of cycles that cover every edge of G

Cycle cover

- cycle - a graph with every vertex of even degree
- cycle cover of a bridgeless graph G - a collection of cycles that cover every edge of G
- length of a cycle cover \mathcal{C} - the sum of lengths of all the cycles in \mathcal{C}

Cycle cover

- cycle - a graph with every vertex of even degree
- cycle cover of a bridgeless graph G - a collection of cycles that cover every edge of G
- length of a cycle cover \mathcal{C} - the sum of lengths of all the cycles in \mathcal{C}
- $\operatorname{scc}(G) \ldots$ the length of a shortest cycle cover

Short cycle cover problem (Itai, Rodeh, 1978)
Given a bridgeless graph, what is the length of its shortest cycle cover?

- quickly gained great prominence

Cycle cover

- cycle - a graph with every vertex of even degree
- cycle cover of a bridgeless graph G - a collection of cycles that cover every edge of G
- length of a cycle cover \mathcal{C} - the sum of lengths of all the cycles in \mathcal{C}
- $\operatorname{scc}(G) \ldots$ the length of a shortest cycle cover

Short cycle cover problem (Itai, Rodeh, 1978)
Given a bridgeless graph, what is the length of its shortest cycle cover?

- quickly gained great prominence

Short cycle cover conjecture

Short cycle cover conjecture (Alon, Tarsi; Jaeger; 1985)
Every bridgeless graph G has a cycle cover of length at most $\frac{7}{5} \cdot|E(G)|$.

Short cycle cover conjecture

Short cycle cover conjecture (Alon, Tarsi; Jaeger; 1985)
Every bridgeless graph G has a cycle cover of length at most $\frac{7}{5} \cdot|E(G)|$.

- $\operatorname{scc}(P g)=\frac{7}{5} \cdot|E(P g)|$

Short cycle cover conjecture

Short cycle cover conjecture (Alon, Tarsi; Jaeger; 1985)
Every bridgeless graph G has a cycle cover of length at most $\frac{7}{5} \cdot|E(G)|$.

- $\operatorname{scc}(P g)=\frac{7}{5} \cdot|E(P g)|$

Theorem (Bermond, Jackson, Jaeger 1983; Alon, Tarsi, 1985)
Every bridgeless graph G has a cycle cover of length at most $\frac{5}{3} \cdot|E(G)|$.

Related problems

- Conjecture is optimization in nature, however it implies Cycle double cover conjecture (Jamshy, Tarsy, 1992)

Related problems

- Conjecture is optimization in nature, however it implies Cycle double cover conjecture (Jamshy, Tarsy, 1992)
- SCCC is implied by the Petersen colouring conjecture

Related problems

- Conjecture is optimization in nature, however it implies Cycle double cover conjecture (Jamshy, Tarsy, 1992)
- SCCC is implied by the Petersen colouring conjecture
- Chinese postman problem

$$
\operatorname{scc}(G) \geq c p(G)
$$

SCCC and cubic graphs

- crucial are cubic graphs because the largest values of the covering ratio between $\operatorname{scc}(G)$ and $|E(G)|$ are known for cubic graphs

SCCC and cubic graphs

- crucial are cubic graphs because the largest values of the covering ratio between $\operatorname{scc}(G)$ and $|E(G)|$ are known for cubic graphs
- the covering ratio $\frac{7}{5}$ is reached for infinitely many cubic graphs with cyclic connectivity 2 and 3

SCCC and cubic graphs

- crucial are cubic graphs because the largest values of the covering ratio between $\operatorname{scc}(G)$ and $|E(G)|$ are known for cubic graphs
- the covering ratio $\frac{7}{5}$ is reached for infinitely many cubic graphs with cyclic connectivity 2 and 3
- [Fan 2017] the covering ratio for bridgeless cubic graphs is at most 218/135 (≈ 1.6148)

SCCC and cubic graphs

- crucial are cubic graphs because the largest values of the covering ratio between $\operatorname{scc}(G)$ and $|E(G)|$ are known for cubic graphs
- the covering ratio $\frac{7}{5}$ is reached for infinitely many cubic graphs with cyclic connectivity 2 and 3
- [Fan 2017] the covering ratio for bridgeless cubic graphs is at most 218/135 (≈ 1.6148)
- [Lukot'ka 2017] the covering ratio for bridgeless cubic graphs is at most $212 / 135(\approx 1.5703)$

SCCC and cubic graphs

- a natural lower bound for the covering ratio of cubic graphs is $\frac{4}{3}$

SCCC and cubic graphs

- a natural lower bound for the covering ratio of cubic graphs is $\frac{4}{3}$
- 3-edge-colourable cubic graphs have the covering ratio $\frac{4}{3}$

SCCC and cubic graphs

- a natural lower bound for the covering ratio of cubic graphs is $\frac{4}{3}$
- 3-edge-colourable cubic graphs have the covering ratio $\frac{4}{3}$
- all cyclically 4-edge-connected cubic graphs where the covering ratio is known have the value close to $\frac{4}{3}$ [Brinkmann, Goedgebeur, Hägglund, Markström, 2013]

SCCC and cubic graphs

- a natural lower bound for the covering ratio of cubic graphs is $\frac{4}{3}$
- 3-edge-colourable cubic graphs have the covering ratio $\frac{4}{3}$
- all cyclically 4-edge-connected cubic graphs where the covering ratio is known have the value close to $\frac{4}{3}$ [Brinkmann, Goedgebeur, Hägglund, Markström, 2013]
- [Brinkmann, Goedgebeur, Hägglund, Markström, 2013] up to 36 vertices there are two non-trivial cubic graphs that have the covering ratio greater than $\frac{4}{3}$ (the Petersen graph and G_{34} discovered by Hägglund in 2016)

SCCC and cubic graphs

- a natural lower bound for the covering ratio of cubic graphs is $\frac{4}{3}$
- 3-edge-colourable cubic graphs have the covering ratio $\frac{4}{3}$
- all cyclically 4-edge-connected cubic graphs where the covering ratio is known have the value close to $\frac{4}{3}$ [Brinkmann, Goedgebeur, Hägglund, Markström, 2013]
- [Brinkmann, Goedgebeur, Hägglund, Markström, 2013] up to 36 vertices there are two non-trivial cubic graphs that have the covering ratio greater than $\frac{4}{3}$ (the Petersen graph and G_{34} discovered by Hägglund in 2016)
- both these graphs have $\operatorname{scc}(G)=\frac{4}{3} \cdot|E(G)|+1$

SCCC and cubic graphs

- a natural lower bound for the covering ratio of cubic graphs is $\frac{4}{3}$
- 3-edge-colourable cubic graphs have the covering ratio $\frac{4}{3}$
- all cyclically 4-edge-connected cubic graphs where the covering ratio is known have the value close to $\frac{4}{3}$ [Brinkmann, Goedgebeur, Hägglund, Markström, 2013]
- [Brinkmann, Goedgebeur, Hägglund, Markström, 2013] up to 36 vertices there are two non-trivial cubic graphs that have the covering ratio greater than $\frac{4}{3}$ (the Petersen graph and G_{34} discovered by Hägglund in 2016)
- both these graphs have $\operatorname{scc}(G)=\frac{4}{3} \cdot|E(G)|+1$
- [Esperet, Mazzuoccolo, 2014] infinite family with $\operatorname{scc}(G)>\frac{4}{3} \cdot|E(G)|$
- [Esperet, Mazzuoccolo, 2014] there exists G with $\operatorname{scc}(G) \geq \frac{4}{3} \cdot|E(G)|+2$

SCCC and cubic graphs

Conjecture (Brinkmann, Goedgebeur, Hägglund, Markström, 2013) For every cyclically 4-edge-connected cubic graph G with m edges

$$
\operatorname{scc}(G) \leq \frac{4}{3} \cdot m+o(m)
$$

SCCC and cubic graphs

Conjecture (Brinkmann, Goedgebeur, Hägglund, Markström, 2013) For every cyclically 4-edge-connected cubic graph G with m edges

$$
\operatorname{scc}(G) \leq \frac{4}{3} \cdot m+o(m)
$$

evidence for this conjecture:

- [Hägglund, Markström, 2013], [Steffen, 2015]

SCCC and cubic graphs

Conjecture (Brinkmann, Goedgebeur, Hägglund, Markström, 2013) For every cyclically 4-edge-connected cubic graph G with m edges

$$
\operatorname{scc}(G) \leq \frac{4}{3} \cdot m+o(m) .
$$

evidence for this conjecture:

- [Hägglund, Markström, 2013], [Steffen, 2015]
we disprove the conjecture:

Theorem (EM,Škoviera)

There exists a family of cyclically 4-edge-connected cubic graphs G_{n}, $n \geq 1$ such that

$$
\operatorname{scc}\left(G_{n}\right) \geq\left(\frac{4}{3}+\frac{1}{69}\right)\left|E\left(G_{n}\right)\right| .
$$

SCC and pmi

G - bridgeless cubic graph

- pmi $(G)=$ the minimum number of perfect matchings that cover all the edges of G

SCC and pmi

G - bridgeless cubic graph

- pmi $(G)=$ the minimum number of perfect matchings that cover all the edges of G
- [Hägglund, Markström, 2013; Steffen 2015] if $\operatorname{scc}(G)>\frac{4}{3}$ then $p m i(G)=5$

Sketch of the proof

- weight of an edge e in \mathcal{C} - the number of cycles containing e

Sketch of the proof

- weight of an edge e in \mathcal{C} - the number of cycles containing e
- weight of a vertex v in \mathcal{C} - sum of weights of edges adjacent to v

Sketch of the proof

- weight of an edge e in \mathcal{C} - the number of cycles containing e
- weight of a vertex v in \mathcal{C} - sum of weights of edges adjacent to v
- weight of a multipole - sum of weights of its dangling edges

Sketch of the proof

- weight of an edge e in \mathcal{C} - the number of cycles containing e
- weight of a vertex v in \mathcal{C} - sum of weights of edges adjacent to v
- weight of a multipole - sum of weights of its dangling edges for each cubic graph $G, \operatorname{scc}(G) \geq \frac{4}{3} \cdot|E(G)|$

Sketch of the proof

- weight of an edge e in \mathcal{C} - the number of cycles containing e
- weight of a vertex v in \mathcal{C} - sum of weights of edges adjacent to v
- weight of a multipole - sum of weights of its dangling edges for each cubic graph $G, \operatorname{scc}(G) \geq \frac{4}{3} \cdot|E(G)|$
- a cubic graph G such that $\operatorname{scc}(G)=\frac{4}{3} \cdot|E(G)|$ is called light

Resistant (2, 2)-pole

no light cover

Resistant (2, 2)-pole

Properties of a resistant (2, 2)-pole

$S(e)$ - set of cycles containing e

Properties of a resistant (2, 2)-pole

 $S(e)$ - set of cycles containing eLemma
$M=$ resistant (2,2)-pole

In every light cover

- if $w(M)=4$, then $S(e)=S(f)$ and $S(g)=S(h)$
- if M is of type C then $S(e) \cap S(f)=\emptyset$ and $S(g) \cap S(h)=\emptyset$
- if $w(e)=w(f)=1$ and e and f belong to the different cycles of the cycle cover, then $w(g)=w(h)=2$

(2, 2)-pole Z

$X_{1}, X_{2}, X_{3}, X_{4}$ - resistant (2,2)-poles

Z is not a light $(2,2)$-pole

- suppose to the contrary that Z is light

Z is not a light $(2,2)$-pole

- suppose to the contrary that Z is light
- then
- each vertex has weight 4
- each edge is in 1 or 2 cycles

Z is not a light $(2,2)$-pole

- suppose to the contrary that Z is light
- then
- each vertex has weight 4
- each edge is in 1 or 2 cycles
- for $i \in\{1,2,3,4\}$, the weight of each X_{i} is 4,6 , or 8

Z is not a light $(2,2)$-pole

- suppose to the contrary that Z is light
- then
- each vertex has weight 4
- each edge is in 1 or 2 cycles
- for $i \in\{1,2,3,4\}$, the weight of each X_{i} is 4,6 , or 8
- for $i \in\{2,3\}$, the weight of each X_{i} is 4 or 6

Z is not a light $(2,2)$-pole

suppose that weitht of X_{i} is 8 for $i \in\{2,3\}$

Z is not a light (2,2)-pole

suppose that weitht of X_{i} is 8 for $i \in\{2,3\}$

Z is not a light (2,2)-pole

suppose that weitht of X_{i} is 8 for $i \in\{2,3\}$

Z is not a light (2,2)-pole

suppose that weitht of X_{i} is 8 for $i \in\{2,3\}$

Z is not a light $(2,2)$-pole

suppose that weitht of X_{i} is 8 for $i \in\{2,3\}$

Z is not a light $(2,2)$-pole

suppose that weitht of X_{i} is 8 for $i \in\{2,3\}$

a contradiction

Types of X_{2} and X_{3}

- each of X_{2} and X_{3} is of one of the types A, L, R, C

Classification by $(\alpha, \beta)=\left(\right.$ type of X_{2}, type of $\left.X_{3}\right)$

- $\alpha, \beta \in\{A, C, L, R\}$ (16 possibilities)

$(\alpha, \beta) \notin\{(L, R),(L, C),(C, R)\}$

$(\alpha, \beta) \notin\{(L, R),(L, C),(C, R)\}$

$(\alpha, \beta) \notin\{(L, R),(L, C),(C, R)\}$

a contradiction

$(\alpha, \beta) \notin\{(A, A),(A, L),(R, A),(R, L)\}$

$(\alpha, \beta) \notin\{(A, A),(A, L),(R, A),(R, L)\}$

$(\alpha, \beta) \notin\{(A, A),(A, L),(R, A),(R, L)\}$

$(\alpha, \beta) \notin\{(A, A),(A, L),(R, A),(R, L)\}$

a contradiction

$(\alpha, \beta) \notin\{(L, L),(R, R)\}$

$(\alpha, \beta) \notin\{(L, L),(R, R)\}$

$(\alpha, \beta) \notin\{(L, L),(R, R)\}$

$(\alpha, \beta) \notin\{(L, L),(R, R)\}$

$(\alpha, \beta) \notin\{(L, L),(R, R)\}$

a contradiction

- we exclude many other ordered pairs (α, β) for $\alpha, \beta \in\{A, C, L, R\}$
- we exclude many other ordered pairs (α, β) for $\alpha, \beta \in\{A, C, L, R\}$ - $(\alpha, \beta) \in\{(C, C),(R, C),(C, L)\}$ and $w(K)=8$

- we exclude many other ordered pairs (α, β) for $\alpha, \beta \in\{A, C, L, R\}$ - $(\alpha, \beta) \in\{(C, C),(R, C),(C, L)\}$ and $w(K)=8$

- we exclude many other ordered pairs (α, β) for $\alpha, \beta \in\{A, C, L, R\}$ - $(\alpha, \beta) \in\{(C, C),(R, C),(C, L)\}$ and $w(K)=8$

- we exclude many other ordered pairs (α, β) for $\alpha, \beta \in\{A, C, L, R\}$ - $(\alpha, \beta) \in\{(C, C),(R, C),(C, L)\}$ and $w(K)=8$

- we exclude many other ordered pairs (α, β) for $\alpha, \beta \in\{A, C, L, R\}$ - $(\alpha, \beta) \in\{(C, C),(R, C),(C, L)\}$ and $w(K)=8$

a contradiction

- we exclude many other ordered pairs (α, β) for $\alpha, \beta \in\{A, C, L, R\}$ - $(\alpha, \beta) \in\{(C, C),(R, C),(C, L)\}$ and $w(K)=8$

a contradiction ... the (2,2)-pole Z is not light
- the (2,2)-pole Z is not light
- the (2,2)-pole Z is not light
- let G_{k} be the cyclic junction of k copies of Z
- the (2,2)-pole Z is not light
- let G_{k} be the cyclic junction of k copies of Z
- in every cycle cover of G_{k} at least k vertices have weight at least 6
- the (2,2)-pole Z is not light
- let G_{k} be the cyclic junction of k copies of Z
- in every cycle cover of G_{k} at least k vertices have weight at least 6
- all vertices have weight at least 4
- the (2,2)-pole Z is not light
- let G_{k} be the cyclic junction of k copies of Z
- in every cycle cover of G_{k} at least k vertices have weight at least 6
- all vertices have weight at least 4
- $\operatorname{scc}\left(G_{k}\right) \geq\left(\frac{4}{3}+\frac{1}{69}\right)\left|E\left(G_{k}\right)\right|$

Conclusion

Conjecture (Brinkmann, Goedgebeur, Hägglund, Markström, 2013)
For every cyclically 4-edge-connected cubic graph G with m edges,

$$
\operatorname{scc}(G) \leq \frac{4}{3} \cdot m+o(m)
$$

Conjecture (EM, Škoviera)
For every cyclically 5-edge-connected cubic graph G with m edges,

$$
\operatorname{scc}(G) \leq \frac{4}{3} \cdot m+o(m)
$$

Thank you for your attention!

