Ghent Graph Theory Workshop

Superposition of snarks revisited

Martin Škoviera

Comenius University, Bratislava

joint work with Edita Máčajová

Cubic graphs

Every cubic graph can be properly coloured with four colours [Vizing 1964] \implies cubic graphs naturally split into two classes:

Class 1...graphs that admit a 3-edge-colouring ($\chi' = 3$)Class 2...graphs with no 3-edge-colouring ($\chi' = 4$)

Cubic graphs

Every cubic graph can be properly coloured with four colours [Vizing 1964] \implies cubic graphs naturally split into two classes:

Class 1...graphs that admit a 3-edge-colouring ($\chi' = 3$)Class 2...graphs with no 3-edge-colouring ($\chi' = 4$)

• almost all cubic graphs are Class 1

[Robinson & Wormald 1992]

• deciding whether a cubic graph is Class 1 or Class 2 is difficult

[Holyer 1981]

Cubic graphs

Every cubic graph can be properly coloured with four colours [Vizing 1964] \implies cubic graphs naturally split into two classes:

Class 1...graphs that admit a 3-edge-colouring ($\chi' = 3$)Class 2...graphs with no 3-edge-colouring ($\chi' = 4$)

• almost all cubic graphs are Class 1

[Robinson & Wormald 1992]

• deciding whether a cubic graph is Class 1 or Class 2 is difficult [He

[Holyer 1981]

• Class 2 graphs rare, difficult to understand ... and important

Snarks are 'nontrivial' cubic graphs of Class 2.

Snarks are crucial for many important problems and conjectures in graph theory:

- Four-Colour-Theorem/Problem
- Cycle Double-Cover Conjecture
- 5-Flow Conjecture
- Fulkerson's Conjecture
- etc.
- trivially true for 3-edge-colourable graphs
- open for snarks
- potential counterexamples are usually snarks with very special properties

Nontrivial snarks

Similar simplifications for cycle-separating edge-cuts of size \leq 3

- \implies 'nontrivial' usually means
 - girth > 4, and
 - cyclically 4-edge-connected.

Early snarks

• Petersen graph [Kempe 1886; Petersen 1898]

Blanuša snarks of order 18
[Blanuša 1946] [Adelson-Velskii & Titov 1973]

Early snarks

- Blanche Descartes snark of order 210 [Tutte 1948]
- Szekeres snark of order 50 [Szekeres 1973]

 infinitely many nontrivial snarks [Adelson-Velskii & Titov 1973; Isaacs 1975]

Dot product

• Introduced in [Isaacs 1975] and [Adelson-Velskii & Titov 1973]

If G and H are snarks, then G.H is a snark. If both G and H are cyclically 4-edge-connected, then so is G.H.

Negator construction

[Loupekine (Isaacs) 1976; Goldberg 1981]

Negator construction

Superposition

Martin Škoviera (Bratislava)

Superposition

Descartes 1948; Adelson-Velskii & Titov 1973; Fiol 1991; Kochol 1996.

Martin Škoviera (Bratislava)

Superposition revisited

Example of superposition: Descartes snark (1948)

Edge-colourings as flows

A 3-edge-colouring of a cubic graph G can be thought of as a mapping

$$\phi\colon E(G)\to \mathbb{Z}_2\times\mathbb{Z}_2-0=\{01,10,11\}$$

such that the sum of colours around each vertex = 0.

3-edge-colouring = nowhere-zero $\mathbb{Z}_2 \times \mathbb{Z}_2$ -flow

Superposition mapping

Let G and H be graphs.

A superposition mapping $f: G \to H$ is a mapping from a subdivision G' of G to a subdivision H' of H s.t.

- vertex \mapsto vertex
- edge \mapsto edge or vertex (edge can be contracted to a vertex)
- f preserves incidence

Superposition mapping

Let G and H be graphs.

A superposition mapping $f: G \to H$ is a mapping from a subdivision G' of G to a subdivision H' of H s.t.

- vertex \mapsto vertex
- edge \mapsto edge or vertex (edge can be contracted to a vertex)
- f preserves incidence

- $-f: G' \to H'$ is onto
- -G is cubic, but H need not be

Superposition mapping

Superposition mapping and flows

Let $f: \mathbf{G} \to \mathbf{H}$ be a superposition mapping. Then

- every $\mathbb{Z}_2 \times \mathbb{Z}_2$ -valuation ϕ of G induces a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -valuation ϕ_* of H
- if ϕ is a flow on **G**, then ϕ_* is a flow on **H**

Superposition mapping and flows

Let $f: \mathbf{G} \to \mathbf{H}$ be a superposition mapping. Then

- every $\mathbb{Z}_2 \times \mathbb{Z}_2$ -valuation ϕ of G induces a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -valuation ϕ_* of H
- if ϕ is a flow on **G**, then ϕ_* is a flow on **H**

The aim is to contradict the existence of a nowhere-zero $\mathbb{Z}_2 \times \mathbb{Z}_2$ -flow ϕ on *G* provided *H* has no nowhere-zero $\mathbb{Z}_2 \times \mathbb{Z}_2$ -flow.

Superposition mapping and flows

Let $f: \mathbf{G} \to \mathbf{H}$ be a superposition mapping. Then

- every $\mathbb{Z}_2 \times \mathbb{Z}_2$ -valuation ϕ of G induces a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -valuation ϕ_* of H
- if ϕ is a flow on **G**, then ϕ_* is a flow on **H**

The aim is to contradict the existence of a nowhere-zero $\mathbb{Z}_2 \times \mathbb{Z}_2$ -flow ϕ on *G* provided *H* has no nowhere-zero $\mathbb{Z}_2 \times \mathbb{Z}_2$ -flow. For example:

- the induced valuation ϕ_* is nowhere-zero while H is a snark (contradiction!)
- the induced valuation ϕ_* fails to be a flow (contradiction!)

Dot product as superposition

G.H = substitution of an edge of H with a dipole obtained from G

Superposition with active superedges

- 1. Choose a base snark H for superposition and a subgraph $X \subseteq H$, typically a circuit.
- 2. For each $e \in E(X)$ choose a snark K_e and create a superedge S_e by
 - removing two vertices
 - severing two edges, or by
 - removing one vertex and severing one edge
- 3. Replace each edge e on X with the superedge S_e
- 4. Add supervertices arbitrarily to obtain a cubic graph G

Superposition with active superedges

- 1. Choose a base snark H for superposition and a subgraph $X \subseteq H$, typically a circuit.
- 2. For each $e \in E(X)$ choose a snark K_e and create a superedge S_e by
 - removing two vertices
 - severing two edges, or by
 - removing one vertex and severing one edge
- 3. Replace each edge e on X with the superedge S_e
- 4. Add supervertices arbitrarily to obtain a cubic graph G
- 5. The choice of superedges guarantees that a nowhere-zero $\mathbb{Z}_2 \times \mathbb{Z}_2$ -flow on *G* would induce one on *H* (contradiction!).

Superposition with active supervertices

Applications of superposition (active superedges)

• Snarks with large girth [Kochol 1996]

There exists a cyclically 5-connected snark of girth g for each $g \ge 5$.

• Snarks with orientable polyhedral embeddings [Kochol 2009]

For every orientable surface S of genus ≥ 5 there exists a cyclically 5-connected snark with a polyhedral embedding in S.

 Snarks with given circular flow numbers [Máčajová & Raspaud 2006; Lukoťka & S. 2011]

For every rational number $r \in (4, 5]$ the exists a cyclically 4-edge-connected snark G with girth ≥ 5 for which $\Phi_c(G) = r$. Base graph of superposition for $\Phi_c = 4 + 1/2$

A graph with $\Phi_c = 4 + 1/2$

A binary snark has a spanning tree T with all vertices of degree 3 or 1, and all leaves at the same distance from the centre r.

Equivalently:

 ${\mathcal T}$ consists of three isomorphic binary trees whose roots are joined to the central vertex r

A binary snark has a spanning tree T with all vertices of degree 3 or 1, and all leaves at the same distance from the centre r.

Equivalently:

 ${\mathcal T}$ consists of three isomorphic binary trees whose roots are joined to the central vertex r

Binary snarks appeared in connection with the study of homeomorphically irreducible spanning trees in cubic graphs (hists) [Hoffmann-Ostenhof, Ozeki, C.-Q. Zhang, ...]

Binary snarks appeared in connection with the study of homeomorphically irreducible spanning trees in cubic graphs (hists) [Hoffmann-Ostenhof, Ozeki, C.-Q. Zhang, ...]

[Hoffmann-Ostenhof & Jatschka 2017]

discovered a small number of binary snarks of order 46 by a computer search.

Binary snarks appeared in connection with the study of homeomorphically irreducible spanning trees in cubic graphs (hists) [Hoffmann-Ostenhof, Ozeki, C.-Q. Zhang, ...]

[Hoffmann-Ostenhof & Jatschka 2017]

discovered a small number of binary snarks of order 46 by a computer search.

Conjecture (Hoffmann-Ostenhof & Jatschka 2017)

There exist infinitely many binary snarks with rotation property.

Binary snarks (active supervertices)

Binary snarks (active supervertices)

Every 3-edge-colouring of B_i , $i \ge 1$, assigns different colours to both pairs of dangling edges.

Binary snarks (active supervertices)

Theorem (Máčajová & S. 2019+)

Let G be a connected cubic graph and let \overline{G} be created from G by an even negator superposition. If both G_0 and G_1 are snarks, then so is \overline{G} .

Furthermore, if every (2,2,1)-pole used in the superposition \overline{G} is amiable, then \overline{G} is a snark \iff both G_0 and G_1 are snarks.

A (2,2,1)-pole M is amiable if for every 2-connector S of M there exists a 3-edge-colouring of M s.t. both edges of S receive the same colour.

Application to permutation snarks

A permutation snark is a connected cubic graph of Class 2 with a 2-factor consisting of two chordless circuits.

Theorem (Máčajová & S. 2019+)

There exists a cyclically 5-edge-connected snark of order n for each $n \equiv 2 \pmod{8}$ with $n \ge 34$.

Previously such snarks were known only for $n \equiv 10 \pmod{24}$ [Hägglund, Hoffmann-Ostenhof 2017]. Thank you for listening