Ghent Graph Theory Workshop

Superposition of snarks revisited

Martin Škoviera

Comenius University, Bratislava

joint work with Edita Máčajová

Cubic graphs

Every cubic graph can be properly coloured with four colours [Vizing 1964] $\Longrightarrow \quad$ cubic graphs naturally split into two classes:

Class $1 \ldots$ graphs that admit a 3-edge-colouring $\left(\chi^{\prime}=3\right)$ Class $2 \ldots$ graphs with no 3-edge-colouring $\quad\left(\chi^{\prime}=4\right)$

Cubic graphs

Every cubic graph can be properly coloured with four colours [Vizing 1964] $\Longrightarrow \quad$ cubic graphs naturally split into two classes:

Class $1 \ldots$ graphs that admit a 3-edge-colouring $\left(\chi^{\prime}=3\right)$ Class $2 \ldots$ graphs with no 3-edge-colouring $\quad\left(\chi^{\prime}=4\right)$

- almost all cubic graphs are Class 1 [Robinson \& Wormald 1992]
- deciding whether a cubic graph is Class 1 or Class 2 is difficult
[Holyer 1981]

Cubic graphs

Every cubic graph can be properly coloured with four colours [Vizing 1964] $\Longrightarrow \quad$ cubic graphs naturally split into two classes:

Class $1 \ldots$ graphs that admit a 3-edge-colouring $\left(\chi^{\prime}=3\right)$ Class $2 \ldots$ graphs with no 3-edge-colouring $\quad\left(\chi^{\prime}=4\right)$

- almost all cubic graphs are Class 1
- deciding whether a cubic graph is Class 1 or Class 2 is difficult
[Robinson \& Wormald 1992]
[Holyer 1981]
- Class 2 graphs rare, difficult to understand ... and important

Snarks are 'nontrivial' cubic graphs of Class 2.

Snarks

Snarks are crucial for many important problems and conjectures in graph theory:

- Four-Colour-Theorem/Problem
- Cycle Double-Cover Conjecture
- 5-Flow Conjecture
- Fulkerson's Conjecture
- etc.
- trivially true for 3-edge-colourable graphs
- open for snarks
- potential counterexamples are usually snarks with very special properties

Nontrivial snarks

Similar simplifications for cycle-separating edge-cuts of size ≤ 3
$\Longrightarrow \quad$ 'nontrivial' usually means

- girth >4, and
- cyclically 4-edge-connected.

Early snarks

- Petersen graph [Kempe 1886; Petersen 1898]

- Blanuša snarks of order 18
[Blanuša 1946] [Adelson-Velskii \& Titov 1973]

Early snarks

- Blanche Descartes snark of order 210 [Tutte 1948]
- Szekeres snark of order 50 [Szekeres 1973]

- infinitely many nontrivial snarks
[Adelson-Velskii \& Titov 1973; Isaacs 1975]

Dot product

- Introduced in [Isaacs 1975] and [Adelson-Velskii \& Titov 1973]

If G and H are snarks, then G.H is a snark. If both G and H are cyclically 4-edge-connected, then so is G.H.

Negator construction

[Loupekine (Isaacs) 1976; Goldberg 1981]

Negator construction

Superposition

Superposition

Superposition

Descartes 1948; Adelson-Velskii \& Titov 1973; Fiol 1991; Kochol 1996.

Example of superposition: Descartes snark (1948)

Edge-colourings as flows

A 3-edge-colouring of a cubic graph G can be thought of as a mapping

$$
\phi: E(G) \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}-0=\{01,10,11\}
$$

such that the sum of colours around each vertex $=0$.

$$
\text { 3-edge-colouring }=\text { nowhere-zero } \mathbb{Z}_{2} \times \mathbb{Z}_{2} \text {-flow }
$$

Superposition mapping

Let G and H be graphs.
A superposition mapping $f: G \rightarrow H$ is a mapping from a subdivision G^{\prime} of G to a subdivision H^{\prime} of H s.t.

- vertex \mapsto vertex
- edge \mapsto edge or vertex (edge can be contracted to a vertex)
- f preserves incidence

Superposition mapping

Let G and H be graphs.
A superposition mapping $f: G \rightarrow H$ is a mapping from a subdivision G^{\prime} of G to a subdivision H^{\prime} of H s.t.

- vertex \mapsto vertex
- edge \mapsto edge or vertex (edge can be contracted to a vertex)
- f preserves incidence
$-f: G^{\prime} \rightarrow H^{\prime}$ is onto
- G is cubic, but H need not be

Superposition mapping

Superposition mapping and flows

Let $f: G \rightarrow H$ be a superposition mapping. Then

- every $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-valuation ϕ of G induces a $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-valuation ϕ_{*} of H
- if ϕ is a flow on G, then ϕ_{*} is a flow on H

Superposition mapping and flows

Let $f: G \rightarrow H$ be a superposition mapping. Then

- every $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-valuation ϕ of G induces a $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-valuation ϕ_{*} of H
- if ϕ is a flow on G, then ϕ_{*} is a flow on H

The aim is to contradict the existence of a nowhere-zero $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-flow ϕ on G provided H has no nowhere-zero $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-flow.

Superposition mapping and flows

Let $f: G \rightarrow H$ be a superposition mapping. Then

- every $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-valuation ϕ of G induces a $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-valuation ϕ_{*} of H
- if ϕ is a flow on G, then ϕ_{*} is a flow on H

The aim is to contradict the existence of a nowhere-zero $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-flow ϕ on G provided H has no nowhere-zero $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-flow. For example:

- the induced valuation ϕ_{*} is nowhere-zero while H is a snark (contradiction!)
- the induced valuation ϕ_{*} fails to be a flow (contradiction!)

Dot product as superposition

G.H = substitution of an edge of H with a dipole obtained from G

Superposition with active superedges

1. Choose a base snark H for superposition and a subgraph $X \subseteq H$, typically a circuit.
2. For each $e \in E(X)$ choose a snark K_{e} and create a superedge S_{e} by

- removing two vertices
- severing two edges, or by
- removing one vertex and severing one edge

3. Replace each edge e on X with the superedge S_{e}
4. Add supervertices arbitrarily to obtain a cubic graph G

Superposition with active superedges

1. Choose a base snark H for superposition and a subgraph $X \subseteq H$, typically a circuit.
2. For each $e \in E(X)$ choose a snark K_{e} and create a superedge S_{e} by

- removing two vertices
- severing two edges, or by
- removing one vertex and severing one edge

3. Replace each edge e on X with the superedge S_{e}
4. Add supervertices arbitrarily to obtain a cubic graph G
5. The choice of superedges guarantees that a nowhere-zero $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-flow on G would induce one on H (contradiction!).

Superposition with active supervertices

Applications of superposition (active superedges)

- Snarks with large girth [Kochol 1996]

There exists a cyclically 5-connected snark of girth g for each $g \geq 5$.

- Snarks with orientable polyhedral embeddings [Kochol 2009]

For every orientable surface S of genus ≥ 5 there exists a cyclically 5 -connected snark with a polyhedral embedding in S.

- Snarks with given circular flow numbers [Máčajová \& Raspaud 2006; Lukot'ka \& S. 2011]

For every rational number $r \in(4,5]$ the exists a cyclically 4-edge-connected snark G with girth ≥ 5 for which $\Phi_{c}(G)=r$.

Base graph of superposition for $\Phi_{c}=4+1 / 2$

A graph with $\Phi_{c}=4+1 / 2$

Binary snarks

Binary snarks

A binary snark has a spanning tree T with all vertices of degree 3 or 1 , and all leaves at the same distance from the centre r.

Equivalently:
T consists of three isomorphic binary trees whose roots are joined to the central vertex r

Binary snarks

A binary snark has a spanning tree T with all vertices of degree 3 or 1 , and all leaves at the same distance from the centre r.

Equivalently:
T consists of three isomorphic binary trees whose roots are joined to the central vertex r

Binary snarks

Binary snarks appeared in connection with the study of homeomorphically irreducible spanning trees in cubic graphs (hists) [Hoffmann-Ostenhof, Ozeki, C.-Q. Zhang, ...]

Binary snarks

Binary snarks appeared in connection with the study of homeomorphically irreducible spanning trees in cubic graphs (hists) [Hoffmann-Ostenhof, Ozeki, C.-Q. Zhang, ...]
[Hoffmann-Ostenhof \& Jatschka 2017]
discovered a small number of binary snarks of order 46 by a computer search.

Binary snarks

Binary snarks appeared in connection with the study of homeomorphically irreducible spanning trees in cubic graphs (hists) [Hoffmann-Ostenhof, Ozeki, C.-Q. Zhang, ...]
[Hoffmann-Ostenhof \& Jatschka 2017]
discovered a small number of binary snarks of order 46 by a computer search.

Conjecture (Hoffmann-Ostenhof \& Jatschka 2017)

There exist infinitely many binary snarks with rotation property.

Binary snarks (active supervertices)

Binary snarks (active supervertices)

Every 3-edge-colouring of $B_{i}, i \geq 1$, assigns different colours to both pairs of dangling edges.

Binary snarks (active supervertices)

Even negator superposition

Even negator superposition

Even negator superposition

Even negator superposition

Theorem (Máčajová \& S. 2019+)

Let G be a connected cubic graph and let \bar{G} be created from G by an even negator superposition. If both G_{0} and G_{1} are snarks, then so is G.
Furthermore, if every $(2,2,1)$-pole used in the superposition \bar{G} is amiable, then \bar{G} is a snark \Longleftrightarrow both G_{0} and G_{1} are snarks.

A $(2,2,1)$-pole M is amiable if for every 2-connector S of M there exists a 3-edge-colouring of M s.t. both edges of S receive the same colour.

Application to permutation snarks

A permutation snark is a connected cubic graph of Class 2 with a 2-factor consisting of two chordless circuits.

Theorem (Máčajová \& S. 2019+)
There exists a cyclically 5-edge-connected snark of order n for each $n \equiv 2(\bmod 8)$ with $n \geq 34$.

Previously such snarks were known only for $n \equiv 10(\bmod 24)$ [Hägglund, Hoffmann-Ostenhof 2017].

Thank you for listening

