Diagonal Conjecture for Classical Ramsey Numbers

Stanisław Radziszowski
Department of Computer Science
Rochester Institute of Technology, NY, USA
joint work with Meilian Liang and Xiaodong Xu

GGTW, 13 August 2019, Ghent

Ramsey numbers

- $R(G, H)=n$
iff
n is minimal such that in any 2-coloring of the edges of K_{n} there exists a monochromatic G in the first color or a monochromatic H in the second color
- 2 - colorings \cong graphs, $\quad R(k, l)=R\left(K_{k}, K_{l}\right)$
- Generalizes to r colors, $R\left(G_{1}, \cdots, G_{r}\right)$
- Theorem (Ramsey 1930): Ramsey numbers exist

Values and bounds on $R(k, /)$

two colors, avoiding K_{k}, K_{l}

k^{l}	3	4	5	6	7	8	9	10	11	12	13	14	15
3	6	9	14	18	23	28	36	$\begin{aligned} & 40 \\ & 42 \end{aligned}$	$\begin{aligned} & 47 \\ & 50 \end{aligned}$	$\begin{aligned} & 53 \\ & 59 \end{aligned}$	$\begin{aligned} & 60 \\ & 68 \end{aligned}$	$\begin{aligned} & 67 \\ & 77 \end{aligned}$	74 87
4		18	25	$\begin{aligned} & 36 \\ & 41 \\ & \hline \end{aligned}$	$\begin{aligned} & 49 \\ & 61 \end{aligned}$	$\begin{aligned} & 59 \\ & 84 \end{aligned}$	$\begin{array}{r} 73 \\ 115 \end{array}$	$\begin{array}{r} 92 \\ 149 \end{array}$	$\begin{aligned} & 102 \\ & 191 \end{aligned}$	$\begin{aligned} & 128 \\ & 238 \end{aligned}$	$\begin{aligned} & 138 \\ & 291 \end{aligned}$	$\begin{aligned} & 147 \\ & 349 \end{aligned}$	155 417
5			$\begin{array}{r} 43 \\ 48 \\ \hline \end{array}$	$\begin{array}{r} 58 \\ 87 \\ \hline \end{array}$	$\begin{array}{r} 80 \\ 143 \\ \hline \end{array}$	$\begin{aligned} & 101 \\ & 216 \\ & \hline \end{aligned}$	$\begin{aligned} & 133 \\ & 316 \\ & \hline \end{aligned}$	$\begin{aligned} & 149 \\ & 442 \\ & \hline \end{aligned}$	$\begin{aligned} & 183 \\ & 633 \\ & \hline \end{aligned}$	$\begin{aligned} & 203 \\ & 848 \\ & \hline \end{aligned}$	$\begin{array}{r} 233 \\ 1138 \\ \hline \end{array}$	$\begin{array}{r} 267 \\ 1461 \\ \hline \end{array}$	$\begin{array}{r} 269 \\ 1878 \\ \hline \end{array}$
6				$\begin{aligned} & 102 \\ & 165 \end{aligned}$	$\begin{aligned} & 115 \\ & 298 \end{aligned}$	$\begin{aligned} & 134 \\ & 495 \end{aligned}$	$\begin{aligned} & 183 \\ & 780 \end{aligned}$	$\begin{array}{r} 204 \\ 1171 \end{array}$	$\begin{array}{r} 256 \\ 1804 \end{array}$	$\begin{array}{r} 294 \\ 2566 \end{array}$	$\begin{array}{r} 347 \\ 3703 \end{array}$	5033	$\begin{array}{r} 401 \\ 6911 \end{array}$
7					$\begin{aligned} & 205 \\ & 540 \end{aligned}$	$\begin{array}{r} 217 \\ 1031 \end{array}$	$\begin{array}{r} 252 \\ 1713 \end{array}$	$\begin{array}{r} 292 \\ 2826 \end{array}$	$\begin{array}{r} 405 \\ 4553 \end{array}$	$\begin{array}{r} 417 \\ 6954 \end{array}$	$\begin{array}{r} 511 \\ 10578 \end{array}$	15263	22112
8						$\begin{array}{r} 282 \\ 1870 \\ \hline \end{array}$	$\begin{array}{r} 329 \\ 3583 \\ \hline \end{array}$	$\begin{array}{r} 343 \\ 6090 \\ \hline \end{array}$	10630	16944	$\begin{array}{r} 817 \\ 27485 \\ \hline \end{array}$	41525	$\begin{array}{r} 865 \\ 63609 \\ \hline \end{array}$
9							$\begin{array}{r} 565 \\ 6588 \\ \hline \end{array}$	$\begin{array}{r} 581 \\ 12677 \\ \hline \end{array}$	22325	38832	64864		
10								$\begin{array}{r} 798 \\ 23556 \end{array}$	45881	81123			1265

[SPR, EIJC survey Small Ramsey Numbers, revision \#15, 2017, with updates]

Diagonal Conjecture (DC) motivation

$R(k, l)$ seem to decrease along \nearrow diagonals

$\begin{aligned} & \quad l \\ & k \end{aligned}$	3	4	5	6	7	8	9	10	11	12	13	14	7^{15}
3	6	9	(14)	18	23	28	36	$\begin{gathered} 40 \\ 42 \end{gathered}$	$\begin{aligned} & 47 \\ & 50 \end{aligned}$	$\begin{aligned} & 53 \\ & 59 \end{aligned}$	60 68		74 87
4		(18)	25	$\begin{aligned} & 36 \\ & 41 \end{aligned}$	$\begin{aligned} & 49 \\ & 61 \end{aligned}$	$\begin{aligned} & 59 \\ & 84 \end{aligned}$	$\begin{aligned} & 73 \\ & 115 \end{aligned}$	$\begin{array}{r} 92 \\ 149 \end{array}$	$\begin{aligned} & 102 \\ & 191 \end{aligned}$	$\begin{gathered} 128 \\ 238 \end{gathered}$		$\begin{array}{r} 147 \\ +349 \\ \hline \end{array}$	$\begin{aligned} & 155 \\ & 417 \end{aligned}$
5			$\begin{array}{r} 43 \\ 48 \\ \hline \end{array}$	$\begin{aligned} & 58 \\ & 87 \\ & \hline \end{aligned}$	$\begin{array}{r} 80 \\ 143 \end{array}$	$\begin{gathered} 101 \\ 216 \end{gathered}$	$\begin{aligned} & 133 \\ & 316 \end{aligned}$	$\begin{aligned} & 149 \\ & 442 \end{aligned}$	$\begin{aligned} & 183 \\ & 633 \end{aligned}$	$\begin{array}{\|r\|} \hline 203 \\ 848 \\ \hline \end{array}$	$\begin{array}{r} 233 \\ 1138 \\ \hline \end{array}$	$\begin{array}{r} 267 \\ 1461 \end{array}$	$\begin{array}{r} 269 \\ 1878 \\ \hline \end{array}$
6				$\begin{aligned} & 102 \\ & 165 \\ & \hline \end{aligned}$	$\begin{gathered} 115 \\ 298 \\ \hline \end{gathered}$	$\begin{array}{r} 134 \\ 495 \\ \hline \end{array}$	$\begin{aligned} & 183 \\ & 780 \\ & \hline \end{aligned}$	$\begin{array}{r} 204 \\ 1171 \\ \hline \end{array}$	$\begin{gathered} 250^{\circ} \\ 1804 \\ \hline \end{gathered}$	$\begin{array}{r} 294 \\ 2566 \\ \hline \end{array}$	$\begin{array}{r} 347 \\ 3703 \\ \hline \end{array}$	5033	$\begin{array}{r} 401 \\ 6911 \\ \hline \end{array}$
7					$\begin{aligned} & 205 \\ & 540 \\ & \hline \end{aligned}$	$\begin{array}{r} 217 \\ 1031 \\ \hline \end{array}$	$\begin{array}{r} 252 \\ 1713 \\ \hline \end{array}$	292 2826	$\begin{array}{r} 405 \\ 4553 \end{array}$	$\begin{array}{r} 417 \\ 6954 \end{array}$	$\begin{array}{r} 511 \\ 10578 \\ \hline \end{array}$	15263	22112
8						$\begin{array}{r} 282 \\ 1870 \\ \hline \end{array}$	$\begin{aligned} & 329 \\ & 3583 \\ & \hline \end{aligned}$	$\begin{array}{r} 343 \\ 6090 \end{array}$	10630	16944	$\begin{array}{r} 817 \\ 27485 \end{array}$	41525	$\begin{array}{r} 865 \\ 63609 \end{array}$
9							$\begin{array}{r} 565 \\ 6588 \\ \hline \end{array}$	$\begin{array}{r} 581 \\ 12677 \\ \hline \end{array}$	22325	38832	64864		
10								$\begin{array}{r} 798 \\ 23556 \\ \hline \end{array}$	45881	81123			1265

Best known lower bounds for $k \leq /$ satisfy

$$
L B(k, l)>L B(k-1, l+1),
$$

except a mild hick-up at $(8,10)$ vs $(7,11)$.

Diagonal Conjecture (DC)

Two-Color DC:

$R(k, I) \geq R(k-1, I+1)$ for $3 \leq k \leq I$.
As we move away from the diagonal of the table with Ramsey numbers $R(k, I)$, while preserving $k+I$, the values decrease.

Multicolor DC:

For $r \geq 3, a_{i} \geq 3(1 \leq i \leq r)$, if $a_{r-1} \leq a_{r}$, then

$$
R\left(a_{1}, \cdots, a_{r}\right) \geq R\left(a_{1}, \cdots, a_{r-2}, a_{r-1}-1, a_{r}+1\right)
$$

Diagonal Conjecture

cont.

Hints:

- Observed long ago ..., probably by many.
- Stronger versions of DC with $>$ instead of \geq are plausible.
- Known values and bounds do not contradict either DC.
- Wang Rui (2008) published a theorem implying two-color DC, and its extensions to multicolor cases (without proof).

Wang Rui, Another definition for Ramsey numbers, IEEE Int. Symp. Information Science and Engineering, 2 (2008) 405-409.

- Wang's proof is not correct.

A strange alternate definition of Ramsey numbers, followed by unfounded circular arguments between the definitions.
$\lim _{r \rightarrow \infty} R_{r}(k)^{1 / r}$

For $k=a_{1}=\cdots=a_{r}$, let $R_{r}(k)=R\left(a_{1}, \cdots, a_{r}\right)$.

Theorem (Chung-Grinstead 1983)
$L_{3}=\lim _{r \rightarrow \infty} R_{r}(3)^{1 / r}$ exists, finite or infinite.

- The same argument can be used to show that $L_{k}=\lim _{r \rightarrow \infty} R_{r}(k)^{1 / r}$ exists for all $k>3$, finite or infinite.
- $L_{3}>3.1996 \approx 1073^{\frac{1}{6}}$ (Fredricksen-Sweet 2000, X-Xie-Exoo-R 2004).
- Erdős was inclined to think that $L_{3}=\infty(\mathrm{Li}, \mathrm{XR})$.

Consequences of DC

using Abbott's 1965 construction

Lemma
If $D C$ holds, then for every integer $a \geq 3$ we have

$$
R_{2 r}(a)>\left(R_{r}(a-1)-1\right)\left(R_{r}(a+1)-1\right) .
$$

Proof.
Apply DC r times to $R_{2 r}(a)$.
Use a special case of Abbott's lower bound construction

$$
R\left(a_{1}, \ldots, a_{2 r}\right)>\left(R\left(a_{1}, \ldots, a_{r}\right)-1\right)\left(R\left(a_{r+1}, \ldots, a_{r}\right)-1\right) .
$$

Consequences of DC

main theorem

Theorem

If $D C$ holds and $\lim _{r \rightarrow \infty} R_{r}(3)^{\frac{1}{r}}$ is finite, then $\lim _{r \rightarrow \infty} R_{r}(a)^{\frac{1}{r}}$ is finite for every $a \geq 3$.

Proof.
Induction on a via

$$
\lim _{r \rightarrow \infty} \frac{R_{r}(a)^{\frac{1}{r}}}{R_{r}(a-1)^{\frac{1}{r}}} \geq \lim _{r \rightarrow \infty} \frac{R_{r}(a+1)^{\frac{1}{r}}}{R_{r}(a)^{\frac{1}{r}}}
$$

LB vs UB on $R_{r}(3)$ and L_{3}

Consequences of DC

another main theorem
Theorem
If $D C$ holds, then for every $a \geq 3$, we have

$$
\lim _{r \rightarrow \infty} \frac{R_{r}(a)^{\frac{1}{r}}}{R_{r}(a-1)^{\frac{1}{r}}}>1 .
$$

Proof.

First show that

$$
\frac{R_{r}(2 a-1)-1}{R_{r}(a)-1} \geq R_{r}(3)-1 \geq 2^{r}
$$

next that

$$
\lim _{r \rightarrow \infty} \frac{R_{r}(2 a)^{\frac{1}{r}}}{R_{r}(a)^{\frac{1}{r}}} \geq 2
$$

then finish by contradiction.

Consequences of DC

summary

Theorem

If DC holds, then it is true that:
(a) all L_{k} 's are finite or all of them are infinite, and
(b) if L_{3} is finite then $L_{k}<L_{k+1}$ for all $k \geq 3$.

- $\lim _{k \rightarrow \infty} L_{k}=\infty$, even without assuming validity of DC (by Abbott 1965, and by the previous theorem).
- If our perspective that the known lower bounds are much closer to $R_{r}(k)$ than the upper bounds is correct, it would add weight to the case that all limits L_{k} are finite.

Evidence for DC - two colors

$D C(s, t)$ stands for $R(s, t) \geq R(s-1, t+1), 3 \leq s \leq t$.
(a) $D C(3, t)$ is true for all $t \geq 3$.
(b) $D C(4, t)$ is true for all $t \geq 4$.
(c) $D C(5,5), D C(5,6)$ and $D C(5,7)$ are true.
(d) The above establishes the validity of $D C(s, t)$ for all $s<5$, and all cases with $s+t \leq 12$, except $D C(6,6)$.
(e) The further we go from the diagonal of the DC conjecture, the easier it seems to corroborate it. We anticipate DC to be the hardest on the diagonal itself, i.e. proving that $R(t, t) \geq R(t-1, t+1)$ for any $t \geq 6$.
(f) Little bump at $D C(8,10)$.

Evidence for DC - more colors

relying on lower bounds

A_{1}	$L B_{1}$	$L B_{2}$	A_{2}
$3,3,5$	45	55	$3,4,4$
$3,3,6$	61	89	$3,4,5$
$3,3,7$	85	117	$3,4,6$
$3,3,8$	103	152	$3,4,7$
$3,3,9$	129	193	$3,4,8$
$3,3,10$	150	242	$3,4,9$
$3,4,6$	117	139	$3,5,5$
$3,4,7$	152	181	$3,5,6$
$3,4,8$	193	241	$3,5,7$
$4,3,5$	89	128	$4,4,4$
$3,3,3,5$	162	171	$3,3,4,4$

Known lower bounds $L B_{1}$ and $L B_{2}$ on $R\left(a_{1}, \cdots, a_{r-2}, a_{r-1}-1, a_{r}+1\right)$ and $R\left(a_{1}, \cdots, a_{r}\right)$ for some DC-adjacent pairs of parameters A_{1} and A_{2}.

Shannon capacity $c(G)$ and limits L_{k}

$\alpha\left(G^{r}\right)=$ independence of the strong r-th power of graph G
$c(G)=$ Shannon capacity of a noisy channel modeled by G

$$
c(G)=\lim _{r \rightarrow \infty} \alpha\left(G^{r}\right)^{\frac{1}{r}}
$$

We proved (XR 2013):

- For any fixed $k \geq 3, L_{k}=\lim _{r \rightarrow \infty} R_{r}(k)^{1 / r}$ is equal to the supremum of the Shannon capacity $c(G)$ over all graphs G with $\alpha(G)=k-1$, but this supremum cannot be achieved by any finite graph power, $G^{r_{0}}$.

Papers to look at

- Wang Rui, Another definition for Ramsey numbers, IEEE International Symposium on Information Science and Engineering, 2 (2008) 405-409.
- Meilian Liang, SPR, Xiaodong Xu On a Diagonal Conjecture for Classical Ramsey Numbers arXiv 1810.11386, October 2018.
- SPR, revision \#15 of the dynamic survey paper, Small Ramsey Numbers, Electronic Journal of Combinatorics, DS1, March 2017.

777+ papers by many authors ...

Thanks for listening!

Asymptotics for 2 colors

diagonal cases

- Bounds (Erdős 1947, Spencer 1975; Conlon 2010)

$$
\frac{\sqrt{2}}{e} 2^{n / 2} n<R(n, n)<R(n+1, n+1) \leq\binom{ 2 n}{n} n^{-c \frac{\log n}{\log \log n}}
$$

- Conjecture (Erdős 1947, \$100) $\lim _{n \rightarrow \infty} R(n, n)^{1 / n}$ exists.
If it exists, it is between $\sqrt{2}$ and 4 ($\$ 250$ for the value).
- Theorem (Chung-Grinstead 1983)
$L=\lim _{k \rightarrow \infty} R_{k}(3)^{1 / k}$ exists.
$3.199<$ L, (Fredricksen-Sweet 2000, X-Xie-Exoo-R 2004)

Small $R(k, I)$ ，references

$R(5,5) \leq 48$ ，Angeltveit－McKay 2018.

	4	5	6	7	8	9	10	11	12	13	14	15
3	GG	GG	Kéry	$\begin{aligned} & \mathrm{Ki} 2 \\ & \mathrm{GrY} \end{aligned}$	$\begin{gathered} \text { GR } \\ \text { McZ } \end{gathered}$	$\begin{gathered} \mathrm{Ka} 2 \\ \text { GR } \end{gathered}$	$\begin{gathered} \text { Ex5 } \\ \text { GoR! } \end{gathered}$	Ex20 GoRI	K에 1 Les	Koll GoRI	Kol2 GoRI	Kol2 GoRI
4	GG	$\begin{gathered} \text { Kil } \\ \text { MR4 } \end{gathered}$	Ex 19 产只	Ex3 －Mue	$\begin{gathered} \text { ExT } \\ \text { N } \end{gathered}$	Ex16	HaKrl	$\begin{aligned} & \text { ExT } \\ & \text { oper } \end{aligned}$		$\begin{array}{c\|} \hline \text { ExT } \\ \text { Ppet } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { ExT } \\ \hline \end{array}$	$\begin{gathered} \text { ExT } \\ \text { Spet } \\ \hline \end{gathered}$
5		$\begin{gathered} \text { Ex4 } \\ \text { AnM } \end{gathered}$	Exy 振	CaET 1	$\begin{gathered} \mathrm{HaKrl} \\ \text { Spot } \end{gathered}$	$\begin{gathered} \mathrm{Kuz} \\ \hline \end{gathered}$	$\begin{aligned} & \text { ExT } \\ & \hline \text { Wene } \end{aligned}$	Kuz \qquad				$\begin{gathered} \text { ExT } \\ \text { Suw } \end{gathered}$
6			Ka2 Nat	ExT Hz	ExT Nae	Kuz －Men	$K u z$	$K u z$ H2N＋			Lnv	$\begin{gathered} \text { 2.3.h } \\ \text { nw } \end{gathered}$
7				She2 Man		Kuz	Kuz Mae	XXER		$\begin{array}{\|c\|c\|} \hline \text { XuXR } \\ \hline \text { InN+ } \\ \hline \end{array}$	19N＋	－
8					BurR Nae	$\begin{aligned} & \text { Kuz } \\ & \hline \end{aligned}$		H2M＋	［fin＋	XXER IRN＋	＋2M＋	
9						She2 Hizt	$\begin{array}{\|c} \hline \text { XSR2 } \\ \hline \end{array}$	＋274	＋AW＋	Law		
10							She 2 chin	＋2W＋	＋			2．3．h

New avalanche of improved upper bounds after LP attack for higher k and／by Angeltveit－McKay．

Two problems beyond DC

- Generalizing DC.

For connected graphs G_{i} with $s \leq t$, is it true that

$$
R\left(G_{1}, G_{2}, \cdots, K_{s-1}, K_{t+1}\right) \leq R\left(G_{1}, G_{2}, \cdots, K_{s}, K_{t}\right) ?
$$

We think 'YES', but make no more conjectures.

- Let $r \geq 3, a_{i} \geq 3, a_{r-1} \leq a_{r}$, and C be a coloring witnessing

$$
n<R\left(a_{1}, \cdots, a_{r-2}, a_{r-1}-1, a_{r}+1\right) .
$$

Let $G=$ all edges of C in colors $r-1$ and $r,|V(G)|=n$.

$$
\text { Is it true that } G \nrightarrow\left(a_{r-1}, a_{r}\right)^{e} \text { ? }
$$

i.e. that there exists a 2 -coloring of $E(G)$ without any $K_{a_{r-1}}$ in the first color and without $K_{a_{r}}$ in the second color?

We think 'weaker YES'.

