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A problem: Count regular graphs

Let RG(n, d) denote the number of labelled regular graphs of

order n and degree d .
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A graph that contributes to RG(8, 3) = 19355
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A problem: Count regular graphs

Let RG(n, d) denote the number of labelled regular graphs of

order n and degree d .
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A graph that contributes to RG(8, 3) = 19355

The numbers grow rather quickly, for example

RG(30, 9) = 18336678373542130513257734368383782619129122809

30223000342112435635482956708281040928263924915.
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Labelled regular graphs (continued)

For large sizes, computationally efficient exact formulae are only

available for d ≤ 4. We won’t discuss those.
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Labelled regular graphs (continued)

For large sizes, computationally efficient exact formulae are only

available for d ≤ 4. We won’t discuss those.

Our interest is in asymptotic counting, where we want a good

approximation for RG(n, d) as n →∞ while d = d(n).

We can assume 1 ≤ d ≤ (n − 1)/2, since d = 0 is trivial and

d > (n − 1)/2 follows by complementation. Also, nd is even.
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Labelled regular graphs (continued)

For large sizes, computationally efficient exact formulae are only

available for d ≤ 4. We won’t discuss those.

Our interest is in asymptotic counting, where we want a good

approximation for RG(n, d) as n →∞ while d = d(n).

We can assume 1 ≤ d ≤ (n − 1)/2, since d = 0 is trivial and

d > (n − 1)/2 follows by complementation. Also, nd is even.

The case of RG(n, 2) is an elementary exercise.

The case of RG(n, 3) was solved by Ron Read in his 1958 thesis

at the University of London.

Nothing much then happened for 20 years, until Bender and Canfield,

and independently Wormald, solved it for arbitrary constant d .
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The pairing (configuration) model for regular graphs

How to make a 3-regular graph with 8 vertices.
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The pairing (configuration) model for regular graphs

How to make a 3-regular graph with 8 vertices.

Take 8 groups of 3 dots each.
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The pairing (configuration) model for regular graphs

How to make a 3-regular graph with 8 vertices.

Pair the 24 dots together somehow.
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The pairing (configuration) model for regular graphs

How to make a 3-regular graph with 8 vertices.

Convert the groups of dots into vertices.

Note the loops and multiple edges.
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The pairing (configuration) model for regular graphs

How to make a 3-regular graph with 8 vertices.

Try again: Take groups of dots.
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The pairing (configuration) model for regular graphs

How to make a 3-regular graph with 8 vertices.

Pair them somehow.
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The pairing (configuration) model for regular graphs

How to make a 3-regular graph with 8 vertices.

This time the result is a simple regular graph.
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The pairing (configuration) model for regular graphs

How to make a 3-regular graph with 8 vertices.
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The pairing (configuration) model for regular graphs

How to make a 3-regular graph with 8 vertices.

The pairing model is the most important tool for counting and

studying regular graphs of low degree.
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The pairing model used for counting

Consider pairings for order n and degree d .

• There are nd dots.
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The pairing model used for counting

Consider pairings for order n and degree d .

• There are nd dots.

• The number of ways to pair them is
(nd)!

(nd/2)! 2nd/2
.
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The pairing model used for counting

Consider pairings for order n and degree d .

• There are nd dots.

• The number of ways to pair them is
(nd)!

(nd/2)! 2nd/2
.

• The result might be a simple graph.

• Each simple graph corresponds to exactly (d!)n pairings.

Conclusion

RG(n, d) =
(nd)!

(nd/2)! 2nd/2 (d!)n
P (n, d),

where P (n, d) is the probability that a random pairing gives

a simple graph.
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The pairing model used for counting (continued)

The problem has reduced to finding

P (n, d) = the probability that a random pairing gives a simple graph.
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The pairing model used for counting (continued)

The problem has reduced to finding

P (n, d) = the probability that a random pairing gives a simple graph.

For d = o(
√

log n), P (n, d) can be estimated by inclusion-exclusion

or the method of moments (Bollobás, 1980).
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The pairing model used for counting (continued)

The problem has reduced to finding

P (n, d) = the probability that a random pairing gives a simple graph.

For d = o(
√

log n), P (n, d) can be estimated by inclusion-exclusion

or the method of moments (Bollobás, 1980).

Result: P (n, d) ≈ exp

(
−
d2 − 1

4

)
.
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The pairing model used for counting (continued)

The problem has reduced to finding

P (n, d) = the probability that a random pairing gives a simple graph.

For d = o(
√

log n), P (n, d) can be estimated by inclusion-exclusion

or the method of moments (Bollobás, 1980).

Result: P (n, d) ≈ exp

(
−
d2 − 1

4

)
.

If we attempt to let d → ∞ too quickly, the terms in the inclusion-

exclusion series become extremely large compared to the sum of the

terms, so it becomes increasingly difficult to get a good estimate.
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The pairing model and switchings
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The pairing model and switchings

Consider a pairing.
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The pairing model and switchings

There is a loop.
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The pairing model and switchings

Choose some other edge.
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The pairing model and switchings

Switch those two edges with another two.
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The pairing model and switchings

Now the loop is gone.

graphs with specified degrees 7



The pairing model and switchings

But there is still a double edge.
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The pairing model and switchings

Choose some other edge.
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The pairing model and switchings

Switch two edges.
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The pairing model and switchings

Now we have a simple graph.
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The pairing model and switchings

Now we have a simple graph.

Let N(s, t) be the number of pairings with s double edges and t loops.

Using switchings we get estimates of
N(s, t + 1)

N(s, t)
and

N(s + 1, 0)

N(s, 0)

for significant s, t.

From this we can derive a positive term series for 1/P (n, d).
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The pairing model and switchings

Now we have a simple graph.

Let N(s, t) be the number of pairings with s double edges and t loops.

Using switchings we get estimates of
N(s, t + 1)

N(s, t)
and

N(s + 1, 0)

N(s, 0)

for significant s, t.

From this we can derive a positive term series for 1/P (n, d).

Result: Same formula, for d = o(n1/3). (McKay, 1985)
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The pairing model and switchings (continued)

In 1991, McKay and Wormald used switchings of 3 edges to prove that

RG(n, d) =
(nd)!

(nd/2)! 2nd/2 (d!)n
exp

(
−
d2 − 1

4
−
d3

12n
+ o(1)

)
for d = o(n1/2).

Gao and Wormald (2016) improved the coverage of highly-irregular

degree sequences.
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Take groups of dots according to the required degrees.
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Convert the groups of dots into vertices.

Note the loops and multiple edges.
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Try again: Take groups of dots.
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

This time the result is simple.
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Example: Simple graphs with degrees 4,3,3,4,3,3,3,3
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

The key observation is that every simple graph with the

given degree sequence is equally likely to be generated.
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

The key observation is that every simple graph with the

given degree sequence is equally likely to be generated.

Alas, this is only efficient for low degree. For higher degree, too many

attempts are required before a simple graph is obtained.
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Accept-reject strategy

Consider two sets and a relation between them.

A B
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Accept-reject strategy

Consider two sets and a relation between them.

A B

Suppose we know how to generate a random element of A.

How do we generate a random element of B?
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Accept-reject strategy

A B
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Accept-reject strategy

A Ba

1. Choose random a ∈ A.
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Accept-reject strategy

A Ba

1. Choose random a ∈ A.

2. Take a random edge to B.
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Accept-reject strategy

A Ba
b

1. Choose random a ∈ A.

2. Take a random edge to B.

3. Accept b ∈ B with probability proportional to deg(a)/ deg(b).

If unsuccessful, try again.
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Back to simple graphs with degrees 4,3,3,4,3,3,3,3
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Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Take groups of dots according to the required degrees.
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Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.
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Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.

Let’s call this a random member of G(1, 2) because it has 1 loop and

2 double edges.
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Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.

Let’s call this a random member of G(1, 2) because it has 1 loop and

2 double edges.

Using an accept-reject strategy, we can transfer uniform randomness:

G(1, 2)→ G(1, 1)→ G(1, 0)→ G(0, 0)

and then we will have a uniformly random simple graph.
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Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)
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Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

A random member of G(2, 1).
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Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Choose an edge in a double edge and one other.

graphs with specified degrees 13



Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Swap for two other edges.
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Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Possibly accept to get a member of G(1, 1).

graphs with specified degrees 13



Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Possibly accept to get a member of G(1, 1).

In the regular case, McKay and Wormald used this for d = o(n1/3).

Gao and Wormald substantially improved it and got to d = o(n1/2).
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Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Possibly accept to get a member of G(1, 1).

In the regular case, McKay and Wormald used this for d = o(n1/3).

Gao and Wormald substantially improved it and got to d = o(n1/2).

There are no known polynomial expected-time algorithms to generate

uniformly random regular graphs for degrees over n1/2.

Iterative methods exist (e.g. Markov chains) that approach a uniform

distribution asymptotically.
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Random graphs with approximately the given degrees

Applications don’t necessarily want all the graphs generated to have

exactly the specified degrees.
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Random graphs with approximately the given degrees

Applications don’t necessarily want all the graphs generated to have

exactly the specified degrees.

Independent edge models

This class of random graph generalizes Erdős-Rényi random graphs.

For each j, k, there is a probability pjk of edge jk being present. The

choice is made independently for each j, k.
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Random graphs with approximately the given degrees

Applications don’t necessarily want all the graphs generated to have

exactly the specified degrees.

Independent edge models

This class of random graph generalizes Erdős-Rényi random graphs.

For each j, k, there is a probability pjk of edge jk being present. The

choice is made independently for each j, k.

The Chung-Lu Model defines

pjk =
wjwk∑
i wi

,

where w1, . . . , wn are some positive weights.

This is very simple to implement and easy to analyse.

It is not true that the probability of a graph depends only on its degree

sequence.
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The β-model of random graph

Let β1, . . . , βn be some real numbers and define

pjk =
eβj+βj

1 + eβj+βj
.

This independent-edge model uniquely has the property that the

probability of any graph depends only on its degree sequence.
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The β-model of random graph

Let β1, . . . , βn be some real numbers and define

pjk =
eβj+βj

1 + eβj+βj
.

This independent-edge model uniquely has the property that the

probability of any graph depends only on its degree sequence.

Now suppose we have a degree sequence d1, . . . , dn and further wish

that the expectation of the degree of each vertex j is dj . This gives

∑
k 6=j
pjk = dj , (1 ≤ j ≤ n). (∗)
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The β-model of random graph

Let β1, . . . , βn be some real numbers and define

pjk =
eβj+βj

1 + eβj+βj
.

This independent-edge model uniquely has the property that the

probability of any graph depends only on its degree sequence.

Now suppose we have a degree sequence d1, . . . , dn and further wish

that the expectation of the degree of each vertex j is dj . This gives

∑
k 6=j
pjk = dj , (1 ≤ j ≤ n). (∗)

Under very weak conditions, (∗) has a unique solution. (many authors,

2011-2012).
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The β-model of random graph

Let β1, . . . , βn be some real numbers and define

pjk =
eβj+βj

1 + eβj+βj
.

This independent-edge model uniquely has the property that the

probability of any graph depends only on its degree sequence.

Now suppose we have a degree sequence d1, . . . , dn and further wish

that the expectation of the degree of each vertex j is dj . This gives

∑
k 6=j
pjk = dj , (1 ≤ j ≤ n). (∗)

Under very weak conditions, (∗) has a unique solution. (many authors,

2011-2012).

Call this the β-model for d1, . . . , dn.
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The β-model for d1, . . . , dn

Barvinok and Hartigan defined the δ-tame class of degree sequences.

Approximately: |βj | ≤ C for all j , for some constant C.

All degrees are Θ(n) but the variation can be great. For example all

degree sequences with

0.25n ≤ dj ≤ 0.74n (1 ≤ j ≤ n)

are included.
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The β-model for d1, . . . , dn

Barvinok and Hartigan defined the δ-tame class of degree sequences.

Approximately: |βj | ≤ C for all j , for some constant C.

All degrees are Θ(n) but the variation can be great. For example all

degree sequences with

0.25n ≤ dj ≤ 0.74n (1 ≤ j ≤ n)

are included.

Fix Y ⊆
(

[n]

2

)
. Define two random variables:

X = |E(G) ∩ Y | when G is a uniformly random graph with degrees

d1, . . . , dn;

Xβ = |E(G) ∩ Y | when G is generated with the β-model for d1, . . . , dn.

The question is how similar are X and Xβ.
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The β-model for d1, . . . , dn

Assume d1, . . . , dn is δ-tame.
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The β-model for d1, . . . , dn

Assume d1, . . . , dn is δ-tame.

Barvinok and Hartigan (2012) proved:

For |Y | ≥ δn2,

(1− δn−1/2 log n)EXβ ≤ X ≤ (1 + δn−1/2 log n)EXβ
with probability 1− n−Ω(n).
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The β-model for d1, . . . , dn

Assume d1, . . . , dn is δ-tame.

Barvinok and Hartigan (2012) proved:

For |Y | ≥ δn2,

(1− δn−1/2 log n)EXβ ≤ X ≤ (1 + δn−1/2 log n)EXβ
with probability 1− n−Ω(n).

Isaev and McKay (2016) proved:

For any Y and any γ > 0,

Prob
(
|X − EXβ| ≥ γ|Y |1/2

)
≥ 1− ce−2γmin{γ,n1/6(log n)−3},

where c depends only on δ.
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The β-model for d1, . . . , dn

Assume d1, . . . , dn is δ-tame.

Barvinok and Hartigan (2012) proved:

For |Y | ≥ δn2,

(1− δn−1/2 log n)EXβ ≤ X ≤ (1 + δn−1/2 log n)EXβ
with probability 1− n−Ω(n).

Isaev and McKay (2016) proved:

For any Y and any γ > 0,

Prob
(
|X − EXβ| ≥ γ|Y |1/2

)
≥ 1− ce−2γmin{γ,n1/6(log n)−3},

where c depends only on δ.

The key to the improvement was a way to estimate n-dimensional

complex integrals by casting them as complex martingales.
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Counting regular graphs of high degree

The number of regular graphs can be written as a coefficient

in a generating function:

RG(n, d) = [xd1 · · · xdn ]
∏
j<k

(1 + xjxk).

graphs with specified degrees 18



Counting regular graphs of high degree

The number of regular graphs can be written as a coefficient

in a generating function:

RG(n, d) = [xd1 · · · xdn ]
∏
j<k

(1 + xjxk).

By applying Cauchy’s Residue Theorem, we have

RG(n, d) =
1

(2πi)n

∮
· · ·
∮ ∏

j<k(1 + xjxk)

xd+1
1 · · · xd+1

n

dx1 · · · dxn,

where each integration is along a contour enclosing the origin

once anticlockwise.
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Counting regular graphs of high degree

The number of regular graphs can be written as a coefficient

in a generating function:

RG(n, d) = [xd1 · · · xdn ]
∏
j<k

(1 + xjxk).

By applying Cauchy’s Residue Theorem, we have

RG(n, d) =
1

(2πi)n

∮
· · ·
∮ ∏

j<k(1 + xjxk)

xd+1
1 · · · xd+1

n

dx1 · · · dxn,

where each integration is along a contour enclosing the origin

once anticlockwise.

Let’s choose our contours to be circles:

xj = re iθj , where r =

√
λ

1− λ
, λ =

d

n − 1
.
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The case of high degree (continued)

Taking some stuff outside the integral:

RG(n, d) =
(1 + r2)(n2)

(2πr d)n
I(n, d),

where

I(n, d) =

∫ π

−π
· · ·
∫ π

−π
F (θ1, . . . , θn) dθ1 · · · dθn,

where

F (θ) =

∏
j<k

(
1 + λ(e i(θj+θk) − 1)

)
exp

(
id
∑
j θj
) .
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The case of high degree (continued)

Taking some stuff outside the integral:

RG(n, d) =
(1 + r2)(n2)

(2πr d)n
I(n, d),

where

I(n, d) =

∫ π

−π
· · ·
∫ π

−π
F (θ1, . . . , θn) dθ1 · · · dθn,

where

F (θ) =

∏
j<k

(
1 + λ(e i(θj+θk) − 1)

)
exp

(
id
∑
j θj
) .

|F (θ)| ≤ 1 always, which is achieved only at

(θ1, . . . , θn) = (0, . . . , 0) and (θ1, . . . , θn) = (π, . . . , π).
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The case of high degree (continued)

Need: I(n, d) =

∫ π

−π
· · ·
∫ π

−π
F (θ1, . . . , θn) dθ1 · · · dθn.

• Define B = a small cube enclosing (0, . . . , 0).
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The case of high degree (continued)

Need: I(n, d) =

∫ π

−π
· · ·
∫ π

−π
F (θ1, . . . , θn) dθ1 · · · dθn.

• Define B = a small cube enclosing (0, . . . , 0).

• Within B expand logF (θ) by Taylor series and estimate

the integral in B by ad hoc means.
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The case of high degree (continued)

Need: I(n, d) =

∫ π

−π
· · ·
∫ π

−π
F (θ1, . . . , θn) dθ1 · · · dθn.

• Define B = a small cube enclosing (0, . . . , 0).

• Within B expand logF (θ) by Taylor series and estimate

the integral in B by ad hoc means.

• Outside B (and a similar small cube enclosing (π, . . . , π)),

show that the integral of |F (θ)| is negligible in comparison.
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The case of high degree (continued)

Need: I(n, d) =

∫ π

−π
· · ·
∫ π

−π
F (θ1, . . . , θn) dθ1 · · · dθn.

• Define B = a small cube enclosing (0, . . . , 0).

• Within B expand logF (θ) by Taylor series and estimate

the integral in B by ad hoc means.

• Outside B (and a similar small cube enclosing (π, . . . , π)),

show that the integral of |F (θ)| is negligible in comparison.

Result: RG(n, d) =
√

2
(
2πnλd+1(1− λ)n−d

)−n/2
exp

(−1 + 10λ− 10λ2

12λ(1− λ)
+ o(1)

)
if d > n/ log n. (McKay and Wormald, 1990)
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The regular graph conjecture

We noticed in 1990 that the expressions for low degree and high degree

can be written in the same form. Recall the density λ = d/(n − 1).

• Suppose we generate a random graph with n vertices and each edge

independently with probability λ.
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The regular graph conjecture

We noticed in 1990 that the expressions for low degree and high degree

can be written in the same form. Recall the density λ = d/(n − 1).

• Suppose we generate a random graph with n vertices and each edge

independently with probability λ.

• Assume incorrectly that the vertex degrees are independent.

This false assumption gives an estimate

R̂G(n, d) =
(
λλ(1− λ)1−λ)(n2)(n − 1

d

)n
.
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The regular graph conjecture

We noticed in 1990 that the expressions for low degree and high degree

can be written in the same form. Recall the density λ = d/(n − 1).

• Suppose we generate a random graph with n vertices and each edge

independently with probability λ.

• Assume incorrectly that the vertex degrees are independent.

This false assumption gives an estimate

R̂G(n, d) =
(
λλ(1− λ)1−λ)(n2)(n − 1

d

)n
.

Theorem. RG(n, d) ∼
√

2 e1/4 R̂G(n, d) for

(i) 1 ≤ d ≤ o(n1/2) (McKay and Wormald, 1991)

(ii) n/ log n ≤ d ≤ n − n/ log n (McKay and Wormald, 1990)
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The regular graph conjecture

We noticed in 1990 that the expressions for low degree and high degree

can be written in the same form. Recall the density λ = d/(n − 1).

• Suppose we generate a random graph with n vertices and each edge

independently with probability λ.

• Assume incorrectly that the vertex degrees are independent.

This false assumption gives an estimate

R̂G(n, d) =
(
λλ(1− λ)1−λ)(n2)(n − 1

d

)n
.

Theorem. RG(n, d) ∼
√

2 e1/4 R̂G(n, d) for

(i) 1 ≤ d ≤ o(n1/2) (McKay and Wormald, 1991)

(ii) n/ log n ≤ d ≤ n − n/ log n (McKay and Wormald, 1990)

We conjectured that the theorem only requires 1 ≤ d ≤ n − 2.
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Extended counting conjecture

We also conjectured the formula for when the degrees vary, but not too

much from the average.
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Extended counting conjecture

We also conjectured the formula for when the degrees vary, but not too

much from the average.

Liebenau and Wormald proved the extended conjecture in 2017.

Theorem.

There is a constant a > 0 such that the extended counting conjecture

holds if Ω((log n)K) ≤ d̄ ≤ an for all K.

graphs with specified degrees 22



Extended counting conjecture

We also conjectured the formula for when the degrees vary, but not too

much from the average.

Liebenau and Wormald proved the extended conjecture in 2017.

Theorem.

There is a constant a > 0 such that the extended counting conjecture

holds if Ω((log n)K) ≤ d̄ ≤ an for all K.

Amount of irregularity

When d̄ ≈ cn, the theorems we have mentioned require

|dj − d̄ | ≤ n1/2+ε for all j (McKay and Wormald), or

|dj− d̄ | ≤ n3/5−ε for all j , with c small enough (Liebenau and Wormald).
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Greater variation of degree in the dense case

In 2013, Barvinok and Hartigan enumerated graphs with δ-tame

degree sequences.

Recall that this requires all degrees to be Θ(n) but the variation in

degrees can be great.
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Greater variation of degree in the dense case

In 2013, Barvinok and Hartigan enumerated graphs with δ-tame

degree sequences.

Recall that this requires all degrees to be Θ(n) but the variation in

degrees can be great.

Our aim is to achieve a similar variation of degrees but allow the average

degree to be much smaller.
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Why is the integral method difficult for smaller degree?

Recall: We have a small box B surrounding the origin and we want

to estimate the integral of a function F (θ) = F (θ1, . . . , θn) in B.
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Why is the integral method difficult for smaller degree?

Recall: We have a small box B surrounding the origin and we want

to estimate the integral of a function F (θ) = F (θ1, . . . , θn) in B.

Write F (θ) = eG(θ) and expand G(θ) in a Taylor series. Now suppose

we approximate G(θ) in any way: G(θ) = Ĝ(θ) +O(δ) where δ is tiny.
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Why is the integral method difficult for smaller degree?

Recall: We have a small box B surrounding the origin and we want

to estimate the integral of a function F (θ) = F (θ1, . . . , θn) in B.

Write F (θ) = eG(θ) and expand G(θ) in a Taylor series. Now suppose

we approximate G(θ) in any way: G(θ) = Ĝ(θ) +O(δ) where δ is tiny.

If G(θ) was real, we could write∫
B
eG(θ) = (1 +O(δ))

∫
B
eĜ(θ).
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Why is the integral method difficult for smaller degree?

Recall: We have a small box B surrounding the origin and we want

to estimate the integral of a function F (θ) = F (θ1, . . . , θn) in B.

Write F (θ) = eG(θ) and expand G(θ) in a Taylor series. Now suppose

we approximate G(θ) in any way: G(θ) = Ĝ(θ) +O(δ) where δ is tiny.

If G(θ) was real, we could write∫
B
eG(θ) = (1 +O(δ))

∫
B
eĜ(θ).

However, the correct expression for complex G(θ) is∫
B
eG(θ) =

∫
B
eĜ(θ) +O(δ)

∫
B
|eĜ(θ)|.
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Why is the integral method difficult for smaller degree?

Recall: We have a small box B surrounding the origin and we want

to estimate the integral of a function F (θ) = F (θ1, . . . , θn) in B.

Write F (θ) = eG(θ) and expand G(θ) in a Taylor series. Now suppose

we approximate G(θ) in any way: G(θ) = Ĝ(θ) +O(δ) where δ is tiny.

If G(θ) was real, we could write∫
B
eG(θ) = (1 +O(δ))

∫
B
eĜ(θ).

However, the correct expression for complex G(θ) is∫
B
eG(θ) =

∫
B
eĜ(θ) +O(δ)

∫
B
|eĜ(θ)|.

In our problem,
∫
B|eĜ(θ)| is about en/d̄ times larger than

∫
B e

Ĝ(θ), so the

effect of approximating G(θ) is catastrophic if n/d̄ →∞ quickly.
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Why is the integral method difficult for smaller degree?

Recall: We have a small box B surrounding the origin and we want

to estimate the integral of a function F (θ) = F (θ1, . . . , θn) in B.

Write F (θ) = eG(θ) and expand G(θ) in a Taylor series. Now suppose

we approximate G(θ) in any way: G(θ) = Ĝ(θ) +O(δ) where δ is tiny.

If G(θ) was real, we could write∫
B
eG(θ) = (1 +O(δ))

∫
B
eĜ(θ).

However, the correct expression for complex G(θ) is∫
B
eG(θ) =

∫
B
eĜ(θ) +O(δ)

∫
B
|eĜ(θ)|.

In our problem,
∫
B|eĜ(θ)| is about en/d̄ times larger than

∫
B e

Ĝ(θ), so the

effect of approximating G(θ) is catastrophic if n/d̄ →∞ quickly.

A second problem is that
∫
|F (θ)| outside B is no longer small compared

to
∫
F (θ) inside B, so we need a new method for that.
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Excursion: cumulants of a random variable

Let Z be a random variable and let E denote expectation.

The central moments of Z are defined by

µ2(Z) = E (Z − EZ)2,

µ3(Z) = E (Z − EZ)3, etc.
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Excursion: cumulants of a random variable

Let Z be a random variable and let E denote expectation.

The central moments of Z are defined by

µ2(Z) = E (Z − EZ)2,

µ3(Z) = E (Z − EZ)3, etc.

An alternative sequence of numbers is the cumulants:

κ2(Z) = µ2(Z),

κ3(Z) = µ3(Z),

κ4(Z) = µ4(Z)− 3,

κ5(Z) = µ5(Z)− 10µ3(Z), etc.
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Excursion: cumulants of a random variable

Let Z be a random variable and let E denote expectation.

The central moments of Z are defined by

µ2(Z) = E (Z − EZ)2,

µ3(Z) = E (Z − EZ)3, etc.

An alternative sequence of numbers is the cumulants:

κ2(Z) = µ2(Z),

κ3(Z) = µ3(Z),

κ4(Z) = µ4(Z)− 3,

κ5(Z) = µ5(Z)− 10µ3(Z), etc.

In general, the cumulants are defined by a formal series:

E etZ =
∑
j≥0

t j

j!
µj(Z) = exp

(∑
j≥0

t j

j!
κj(Z)

)
.
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Cumulants (continued)

Now let X = (X1, . . . , Xn) be a vector of independent random variables

and let f (x1, . . . , xn) be a complex-valued function.
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Cumulants (continued)

Now let X = (X1, . . . , Xn) be a vector of independent random variables

and let f (x1, . . . , xn) be a complex-valued function.

Isaev recently found a bound on the remainder when the cumulant series

for f (X1, . . . , Xn) is truncated:

E ef (X) = exp

( s∑
j=0

1

j!
κj(f (X)) + Remainder

)
.
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Cumulants (continued)

Now let X = (X1, . . . , Xn) be a vector of independent random variables

and let f (x1, . . . , xn) be a complex-valued function.

Isaev recently found a bound on the remainder when the cumulant series

for f (X1, . . . , Xn) is truncated:

E ef (X) = exp

( s∑
j=0

1

j!
κj(f (X)) + Remainder

)
.

The bound depends on generalised Lipshitz constants for f .

∆1f = max |f (x1, . . . , xj , . . . , xn)

− f (x1, . . . , x
′
j , . . . , xn)|

∆2f = max |f (x1, . . . , xj , . . . , xk, . . . , xn)

− f (x1, . . . , x
′
j , . . . , xk , . . . , xn)

− f (x1, . . . , xj , . . . , x
′
k, . . . , xn)

+ f (x1, . . . , x
′
j , . . . , x

′
k, . . . , xn)|, etc.
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What do cumulants have to do with our problem?

Recall: We need to integrate eG(θ) in a small region B.
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What do cumulants have to do with our problem?

Recall: We need to integrate eG(θ) in a small region B.

The Taylor expansion for G(θ) looks like this:

G(θ) = −θTA θ + f (θ),

where A is a real matrix and f (θ) involves cubic and higher terms.
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What do cumulants have to do with our problem?

Recall: We need to integrate eG(θ) in a small region B.

The Taylor expansion for G(θ) looks like this:

G(θ) = −θTA θ + f (θ),

where A is a real matrix and f (θ) involves cubic and higher terms.

Now find a matrix S such that STAS = I and change variables like

θ = Sφ (a scaling and rotation in n-space), while choosing B to be a

cube R aligned with the axes after the rotation.
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What do cumulants have to do with our problem?

Recall: We need to integrate eG(θ) in a small region B.

The Taylor expansion for G(θ) looks like this:

G(θ) = −θTA θ + f (θ),

where A is a real matrix and f (θ) involves cubic and higher terms.

Now find a matrix S such that STAS = I and change variables like

θ = Sφ (a scaling and rotation in n-space), while choosing B to be a

cube R aligned with the axes after the rotation.

This gives us an integral

C1

∫
R
e−φ

Tφ+f (Sφ),

which is C2 Eef (SX) for X being a vector of independent truncated

normal distributions and C1, C2 are some stuff we can figure out.
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What do cumulants have to do with our problem?

Recall: We need to integrate eG(θ) in a small region B.

The Taylor expansion for G(θ) looks like this:

G(θ) = −θTA θ + f (θ),

where A is a real matrix and f (θ) involves cubic and higher terms.

Now find a matrix S such that STAS = I and change variables like

θ = Sφ (a scaling and rotation in n-space), while choosing B to be a

cube R aligned with the axes after the rotation.

This gives us an integral

C1

∫
R
e−φ

Tφ+f (Sφ),

which is C2 Eef (SX) for X being a vector of independent truncated

normal distributions and C1, C2 are some stuff we can figure out.

Now apply Isaev’s cumulant series theorem to ef (SX).
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The answer

The integral outside B is negligible (a difficult technical calculation

outside the scope of this talk).
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The answer

The integral outside B is negligible (a difficult technical calculation

outside the scope of this talk).

If d̄ ≥ nσ for some σ > 0, the number of graphs with degrees d1, . . . , dn
is

Stuff exp

( 2d(1+p)/σe∑
j=0

1

j!
κj(f (SX)) +O(n−p)

)
,

for any p.
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The answer

The integral outside B is negligible (a difficult technical calculation

outside the scope of this talk).

If d̄ ≥ nσ for some σ > 0, the number of graphs with degrees d1, . . . , dn
is

Stuff exp

( 2d(1+p)/σe∑
j=0

1

j!
κj(f (SX)) +O(n−p)

)
,

for any p.

For d̄ ≈ cn, we allow the degrees to vary by the same amount as

Barvinok and Hartigan did.

For d̄ = o(n), we only require that each degree lies in [c1d̄ , c2d̄] for

some constants 0 < c1 ≤ c2.
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The answer for regular graphs

For any J,

G(n, d) =
√

2 R̂G(n, d) exp

( J∑
j=1

pj(Λ)

Λjnj−1
+O(Λ−J−1n−J)

)
,

where Λ = λ(1− λ) and pj is a polynomial of degree j .

p1(x) =
1

4
x,

p2(x) = −
1

4
x2,

p3(x) =
1

24
(2− 23x)x2,

p4(x) =
1

24
(22− 129x)x3,

p5(x) = −
1

12
(3− 115x + 483x2)x3,

p6(x) = −
1

60
(375− 6615x + 22097x2)x4.

These are enough to re-prove the regular conjecture for d ≥ n1/7+ε.
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An example of the precision for regular graphs

G(n, d) =
√

2 R̂G(n, d) exp

( J∑
j=1

pj(Λ)

Λjnj−1
+O(Λ−J−1n−J)

)
,

Here is how it performs for RG(26, 12).

J value rel. err.

1 1.4258993× 1077 1.1× 10−2

2 1.4120471× 1077 1.0× 10−3

3 1.4107433× 1077 1.1× 10−4

4 1.4106066× 1077 1.6× 10−5

5 1.4105885× 1077 2.9× 10−6

6 1.4105853× 1077 6.5× 10−7

exact 1.4105844× 1077
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A new puzzle

d = 2
d = 3

d = 4
d = 7

d = 10

number of vertices

error

The expansion seems to work for every d , even constant d ,

but we have no idea how to prove it.
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Generalizing

So far we have considered all graphs with a given degree sequence.

Think of that as

“all subgraphs of the complete graph Kn with a given degree sequence”.
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Generalizing

So far we have considered all graphs with a given degree sequence.

Think of that as

“all subgraphs of the complete graph Kn with a given degree sequence”.

Instead of Kn, we can take a fixed supergraph G and count its subgraphs

with a given degree sequence.

Our requirements on G are that it is not too close to bipartite and

that it has reasonable expansion properties. This allows us to study the

probability of large subgraphs.
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Generalizing

So far we have considered all graphs with a given degree sequence.

Think of that as

“all subgraphs of the complete graph Kn with a given degree sequence”.

Instead of Kn, we can take a fixed supergraph G and count its subgraphs

with a given degree sequence.

Our requirements on G are that it is not too close to bipartite and

that it has reasonable expansion properties. This allows us to study the

probability of large subgraphs.

The case where G is bipartite can also be done by similar methods, but

we didn’t do it yet.
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