Graphs with specified degrees

Brendan D. McKay

Australian National University

together with

Mikhail Isaev

Monash University

GRAPHS WITH SPECIFIED DEGREES 1

A problem: Count regular graphs

Let RG(n, d) denote the number of labelled regular graphs of order n and degree d.

A problem: Count regular graphs

Let RG(n, d) denote the number of labelled regular graphs of order n and degree d.

A graph that contributes to RG(8,3) = 19355

A problem: Count regular graphs

Let RG(n, d) denote the number of labelled regular graphs of order n and degree d.

A graph that contributes to RG(8,3) = 19355

The numbers grow rather quickly, for example RG(30,9) = 1833667837354213051325773436838378261912912280930223000342112435635482956708281040928263924915.

For large sizes, computationally efficient exact formulae are only available for $d \leq 4$. We won't discuss those.

For large sizes, computationally efficient exact formulae are only available for $d \le 4$. We won't discuss those.

Our interest is in asymptotic counting, where we want a good approximation for RG(n, d) as $n \to \infty$ while d = d(n).

We can assume $1 \le d \le (n-1)/2$, since d = 0 is trivial and d > (n-1)/2 follows by complementation. Also, *nd* is even.

For large sizes, computationally efficient exact formulae are only available for $d \leq 4$. We won't discuss those.

Our interest is in asymptotic counting, where we want a good approximation for RG(n, d) as $n \to \infty$ while d = d(n).

We can assume $1 \le d \le (n-1)/2$, since d = 0 is trivial and d > (n-1)/2 follows by complementation. Also, *nd* is even.

The case of RG(n, 2) is an elementary exercise.

For large sizes, computationally efficient exact formulae are only available for $d \leq 4$. We won't discuss those.

Our interest is in asymptotic counting, where we want a good approximation for RG(n, d) as $n \to \infty$ while d = d(n).

We can assume $1 \le d \le (n-1)/2$, since d = 0 is trivial and d > (n-1)/2 follows by complementation. Also, *nd* is even.

The case of RG(n, 2) is an elementary exercise.

The case of RG(n, 3) was solved by Ron Read in his 1958 thesis at the University of London.

For large sizes, computationally efficient exact formulae are only available for $d \leq 4$. We won't discuss those.

Our interest is in asymptotic counting, where we want a good approximation for RG(n, d) as $n \to \infty$ while d = d(n).

We can assume $1 \le d \le (n-1)/2$, since d = 0 is trivial and d > (n-1)/2 follows by complementation. Also, *nd* is even.

The case of RG(n, 2) is an elementary exercise.

The case of RG(n, 3) was solved by Ron Read in his 1958 thesis at the University of London.

Nothing much then happened for 20 years, until Bender and Canfield, and independently Wormald, solved it for arbitrary constant d.

How to make a 3-regular graph with 8 vertices.

How to make a 3-regular graph with 8 vertices.

Take 8 groups of 3 dots each.

How to make a 3-regular graph with 8 vertices.

Pair the 24 dots together somehow.

How to make a 3-regular graph with 8 vertices.

Convert the groups of dots into vertices.

Note the loops and multiple edges.

How to make a 3-regular graph with 8 vertices.

Try again: Take groups of dots.

How to make a 3-regular graph with 8 vertices.

Pair them somehow.

How to make a 3-regular graph with 8 vertices.

This time the result is a simple regular graph.

How to make a 3-regular graph with 8 vertices.

How to make a 3-regular graph with 8 vertices.

The pairing model is the most important tool for counting and studying regular graphs of low degree.

Consider pairings for order n and degree d.

• There are *nd* dots.

Consider pairings for order *n* and degree *d*.

- There are *nd* dots.
- The number of ways to pair them is $\frac{(nd)!}{(nd/2)! 2^{nd/2}}$.

Consider pairings for order *n* and degree *d*.

- There are *nd* dots.
- The number of ways to pair them is $\frac{(nd)!}{(nd/2)! 2^{nd/2}}$.

• The result might be a simple graph.

Consider pairings for order n and degree d.

- There are *nd* dots.
- The number of ways to pair them is $\frac{(nd)!}{(nd/2)! 2^{nd/2}}$.
- The result might be a simple graph.
- Each simple graph corresponds to exactly $(d!)^n$ pairings.

Consider pairings for order n and degree d.

- There are *nd* dots.
- The number of ways to pair them is $\frac{(nd)!}{(nd/2)! 2^{nd/2}}$.
- The result might be a simple graph.
- Each simple graph corresponds to exactly $(d!)^n$ pairings.

Conclusion

$$\mathsf{RG}(n,d) = \frac{(nd)!}{(nd/2)! \, 2^{nd/2} \, (d!)^n} \, P(n,d),$$

where P(n, d) is the probability that a random pairing gives a simple graph.

The problem has reduced to finding P(n, d) = the probability that a random pairing gives a simple graph.

The problem has reduced to finding P(n, d) = the probability that a random pairing gives a simple graph.

For $d = o(\sqrt{\log n})$, P(n, d) can be estimated by inclusion-exclusion or the method of moments (Bollobás, 1980).

The problem has reduced to finding

P(n, d) = the probability that a random pairing gives a simple graph.

For $d = o(\sqrt{\log n})$, P(n, d) can be estimated by inclusion-exclusion or the method of moments (Bollobás, 1980).

Result:
$$P(n, d) \approx \exp\left(-\frac{d^2-1}{4}\right).$$

The problem has reduced to finding

P(n, d) = the probability that a random pairing gives a simple graph.

For $d = o(\sqrt{\log n})$, P(n, d) can be estimated by inclusion-exclusion or the method of moments (Bollobás, 1980).

Result:
$$P(n, d) \approx \exp\left(-\frac{d^2 - 1}{4}\right).$$

If we attempt to let $d \to \infty$ too quickly, the terms in the inclusionexclusion series become extremely large compared to the sum of the terms, so it becomes increasingly difficult to get a good estimate.

Consider a pairing.

There is a loop.

Choose some other edge.

Switch those two edges with another two.

Now the loop is gone.

But there is still a double edge.

Choose some other edge.

Switch two edges.

The pairing model and switchings

Now we have a simple graph.

The pairing model and switchings

Now we have a simple graph.

Let N(s, t) be the number of pairings with s double edges and t loops. Using switchings we get estimates of

$$\frac{N(s,t+1)}{N(s,t)} \text{ and } \frac{N(s+1,0)}{N(s,0)}$$

for significant *s*, *t*.

From this we can derive a positive term series for 1/P(n, d).

The pairing model and switchings

Now we have a simple graph.

Let N(s, t) be the number of pairings with s double edges and t loops. Using switchings we get estimates of

$$\frac{N(s,t+1)}{N(s,t)} \text{ and } \frac{N(s+1,0)}{N(s,0)}$$

for significant *s*, *t*.

From this we can derive a positive term series for 1/P(n, d).

Result: Same formula, for $d = o(n^{1/3})$. (McKay, 1985)

The pairing model and switchings (continued)

In 1991, McKay and Wormald used switchings of 3 edges to prove that $RG(n, d) = \frac{(nd)!}{(nd/2)! 2^{nd/2} (d!)^n} \exp\left(-\frac{d^2 - 1}{4} - \frac{d^3}{12n} + o(1)\right)$ for $d = o(n^{1/2})$.

Gao and Wormald (2016) improved the coverage of highly-irregular degree sequences.

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Take groups of dots according to the required degrees.

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Convert the groups of dots into vertices. Note the loops and multiple edges.

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Try again: Take groups of dots.

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

This time the result is simple.

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

The key observation is that every simple graph with the given degree sequence is equally likely to be generated.

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

The key observation is that every simple graph with the given degree sequence is equally likely to be generated.

Alas, this is only efficient for low degree. For higher degree, too many attempts are required before a simple graph is obtained.

Consider two sets and a relation between them.

Consider two sets and a relation between them.

Suppose we know how to generate a random element of A. How do we generate a random element of B?

1. Choose random $a \in A$.

- 1. Choose random $a \in A$.
- 2. Take a random edge to B.

- 1. Choose random $a \in A$.
- 2. Take a random edge to B.
- 3. Accept $b \in B$ with probability proportional to deg(a)/deg(b). If unsuccessful, try again.

Take groups of dots according to the required degrees.

Pair them at random.

Pair them at random.

Let's call this a random member of G(1, 2) because it has 1 loop and 2 double edges.

Pair them at random.

Let's call this a random member of G(1, 2) because it has 1 loop and 2 double edges.

Using an accept-reject strategy, we can transfer uniform randomness: $G(1,2) \rightarrow G(1,1) \rightarrow G(1,0) \rightarrow G(0,0)$

and then we will have a uniformly random simple graph.

A random member of G(2, 1).

Choose an edge in a double edge and one other.

Swap for two other edges.

Possibly accept to get a member of G(1, 1).

Possibly accept to get a member of G(1, 1).

In the regular case, McKay and Wormald used this for $d = o(n^{1/3})$. Gao and Wormald substantially improved it and got to $d = o(n^{1/2})$.

Possibly accept to get a member of G(1, 1).

In the regular case, McKay and Wormald used this for $d = o(n^{1/3})$. Gao and Wormald substantially improved it and got to $d = o(n^{1/2})$.

There are no known polynomial expected-time algorithms to generate uniformly random regular graphs for degrees over $n^{1/2}$.

Iterative methods exist (e.g. Markov chains) that approach a uniform distribution asymptotically.

Random graphs with approximately the given degrees

Applications don't necessarily want all the graphs generated to have exactly the specified degrees.

Random graphs with approximately the given degrees

Applications don't necessarily want all the graphs generated to have exactly the specified degrees.

Independent edge models

This class of random graph generalizes Erdős-Rényi random graphs.

For each j, k, there is a probability p_{jk} of edge jk being present. The choice is made independently for each j, k.

Random graphs with approximately the given degrees

Applications don't necessarily want all the graphs generated to have exactly the specified degrees.

Independent edge models

This class of random graph generalizes Erdős-Rényi random graphs.

For each j, k, there is a probability p_{jk} of edge jk being present. The choice is made independently for each j, k.

The Chung-Lu Model defines

$$p_{jk} = \frac{W_j W_k}{\sum_i W_i},$$

where w_1, \ldots, w_n are some positive weights.

This is very simple to implement and easy to analyse.

It is not true that the probability of a graph depends only on its degree sequence.

The β -model of random graph

Let β_1, \ldots, β_n be some real numbers and define $p_{jk} = rac{e^{eta_j + eta_j}}{1 + e^{eta_j + eta_j}}.$

This independent-edge model **uniquely** has the property that the probability of any graph depends only on its degree sequence.

The β -model of random graph

Let β_1, \ldots, β_n be some real numbers and define $p_{jk} = \frac{e^{\beta_j + \beta_j}}{1 + e^{\beta_j + \beta_j}}.$

This independent-edge model uniquely has the property that the probability of any graph depends only on its degree sequence.

Now suppose we have a degree sequence d_1, \ldots, d_n and further wish that the expectation of the degree of each vertex j is d_j . This gives

$$\sum_{k \neq j} p_{jk} = d_j, \qquad (1 \le j \le n). \tag{(*)}$$

The β -model of random graph

Let
$$\beta_1, \ldots, \beta_n$$
 be some real numbers and define
 $p_{jk} = \frac{e^{\beta_j + \beta_j}}{1 + e^{\beta_j + \beta_j}}.$

This independent-edge model uniquely has the property that the probability of any graph depends only on its degree sequence.

Now suppose we have a degree sequence d_1, \ldots, d_n and further wish that the expectation of the degree of each vertex j is d_j . This gives

$$\sum_{k \neq j} p_{jk} = d_j, \qquad (1 \le j \le n). \tag{(*)}$$

Under very weak conditions, (*) has a unique solution. (many authors, 2011-2012).

The β -model of random graph

Let
$$\beta_1, \ldots, \beta_n$$
 be some real numbers and define
 $p_{jk} = \frac{e^{\beta_j + \beta_j}}{1 + e^{\beta_j + \beta_j}}.$

This independent-edge model uniquely has the property that the probability of any graph depends only on its degree sequence.

Now suppose we have a degree sequence d_1, \ldots, d_n and further wish that the expectation of the degree of each vertex j is d_j . This gives

$$\sum_{k \neq j} p_{jk} = d_j, \qquad (1 \le j \le n). \tag{(*)}$$

Under very weak conditions, (*) has a unique solution. (many authors, 2011-2012).

Call this the β -model for d_1, \ldots, d_n .

Barvinok and Hartigan defined the δ -tame class of degree sequences. Approximately: $|\beta_i| \leq C$ for all j, for some constant C.

All degrees are $\Theta(n)$ but the variation can be great. For example all degree sequences with

 $0.25n \le d_j \le 0.74n$ $(1 \le j \le n)$

are included.

Barvinok and Hartigan defined the δ -tame class of degree sequences. Approximately: $|\beta_j| \leq C$ for all j, for some constant C.

All degrees are $\Theta(n)$ but the variation can be great. For example all degree sequences with

 $0.25n \le d_j \le 0.74n$ $(1 \le j \le n)$

are included.

Fix $Y \subseteq {\binom{[n]}{2}}$. Define two random variables: $X = |E(G) \cap Y|$ when G is a uniformly random graph with degrees d_1, \ldots, d_n ;

 $X_{\beta} = |E(G) \cap Y|$ when G is generated with the β -model for d_1, \ldots, d_n .

The question is how similar are X and X_{β} .

Assume d_1, \ldots, d_n is δ -tame.

Assume d_1, \ldots, d_n is δ -tame.

Barvinok and Hartigan (2012) proved:

For $|Y| \ge \delta n^2$, $(1 - \delta n^{-1/2} \log n) \mathbb{E} X_\beta \le X \le (1 + \delta n^{-1/2} \log n) \mathbb{E} X_\beta$ with probability $1 - n^{-\Omega(n)}$.

Assume d_1, \ldots, d_n is δ -tame.

Barvinok and Hartigan (2012) proved:

For $|Y| \ge \delta n^2$, $(1 - \delta n^{-1/2} \log n) \mathbb{E} X_\beta \le X \le (1 + \delta n^{-1/2} \log n) \mathbb{E} X_\beta$ with probability $1 - n^{-\Omega(n)}$.

Isaev and McKay (2016) proved: For any Y and any $\gamma > 0$, $\operatorname{Prob}(|X - \mathbb{E} X_{\beta}| \ge \gamma |Y|^{1/2}) \ge 1 - ce^{-2\gamma \min\{\gamma, n^{1/6}(\log n)^{-3}\}},$

where *c* depends only on δ .

Assume d_1, \ldots, d_n is δ -tame.

Barvinok and Hartigan (2012) proved:

For $|Y| \ge \delta n^2$, $(1 - \delta n^{-1/2} \log n) \mathbb{E} X_\beta \le X \le (1 + \delta n^{-1/2} \log n) \mathbb{E} X_\beta$ with probability $1 - n^{-\Omega(n)}$.

Isaev and McKay (2016) proved: For any Y and any $\gamma > 0$, $\operatorname{Prob}(|X - \mathbb{E} X_{\beta}| \ge \gamma |Y|^{1/2}) \ge 1 - ce^{-2\gamma \min\{\gamma, n^{1/6}(\log n)^{-3}\}},$ where c depends only on δ .

The key to the improvement was a way to estimate *n*-dimensional complex integrals by casting them as complex martingales.

Counting regular graphs of high degree

The number of regular graphs can be written as a coefficient in a generating function:

$$\mathsf{RG}(n,d) = [x_1^d \cdots x_n^d] \prod_{j < k} (1 + x_j x_k).$$

Counting regular graphs of high degree

The number of regular graphs can be written as a coefficient in a generating function:

$$\mathsf{RG}(n,d) = [x_1^d \cdots x_n^d] \prod_{j < k} (1 + x_j x_k).$$

By applying Cauchy's Residue Theorem, we have

$$\mathsf{RG}(n,d) = \frac{1}{(2\pi i)^n} \oint \cdots \oint \frac{\prod_{j < k} (1+x_j x_k)}{x_1^{d+1} \cdots x_n^{d+1}} \, dx_1 \cdots dx_n,$$

where each integration is along a contour enclosing the origin once anticlockwise.

Counting regular graphs of high degree

The number of regular graphs can be written as a coefficient in a generating function:

$$\mathsf{RG}(n,d) = [x_1^d \cdots x_n^d] \prod_{j < k} (1 + x_j x_k).$$

By applying Cauchy's Residue Theorem, we have

$$\mathsf{RG}(n,d) = \frac{1}{(2\pi i)^n} \oint \cdots \oint \frac{\prod_{j < k} (1+x_j x_k)}{x_1^{d+1} \cdots x_n^{d+1}} \, dx_1 \cdots dx_n,$$

where each integration is along a contour enclosing the origin once anticlockwise.

Let's choose our contours to be circles:

$$x_j = r e^{i heta_j}$$
, where $r = \sqrt{rac{\lambda}{1-\lambda}}$, $\lambda = rac{d}{n-1}$.

Taking some stuff outside the integral:

$$\mathsf{RG}(n,d) = \frac{(1+r^2)\binom{n}{2}}{(2\pi r^d)^n} I(n,d),$$

where

$$I(n,d) = \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} F(\theta_1,\ldots,\theta_n) d\theta_1 \cdots d\theta_n,$$

where

$$F(\boldsymbol{\theta}) = \frac{\prod_{j < k} (1 + \lambda(e^{i(\theta_j + \theta_k)} - 1))}{\exp(id\sum_j \theta_j)}$$

Taking some stuff outside the integral:

$$\mathsf{RG}(n,d) = \frac{(1+r^2)\binom{n}{2}}{(2\pi r^d)^n} I(n,d),$$

where

$$I(n,d) = \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} F(\theta_1,\ldots,\theta_n) d\theta_1 \cdots d\theta_n,$$

where

$$\mathsf{F}(\boldsymbol{\theta}) = \frac{\prod_{j < k} (1 + \lambda(e^{i(\theta_j + \theta_k)} - 1))}{\exp(id\sum_j \theta_j)}$$

 $|F(\theta)| \le 1$ always, which is achieved only at $(\theta_1, \ldots, \theta_n) = (0, \ldots, 0)$ and $(\theta_1, \ldots, \theta_n) = (\pi, \ldots, \pi)$.

Need:
$$I(n, d) = \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} F(\theta_1, \dots, \theta_n) d\theta_1 \cdots d\theta_n.$$

• Define B = a small cube enclosing $(0, \ldots, 0)$.

Need:
$$I(n, d) = \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} F(\theta_1, \dots, \theta_n) d\theta_1 \cdots d\theta_n.$$

- Define B = a small cube enclosing $(0, \ldots, 0)$.
- Within *B* expand log $F(\theta)$ by Taylor series and estimate the integral in *B* by ad hoc means.

Need:
$$I(n, d) = \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} F(\theta_1, \dots, \theta_n) d\theta_1 \cdots d\theta_n.$$

- Define B = a small cube enclosing $(0, \ldots, 0)$.
- Within *B* expand log $F(\theta)$ by Taylor series and estimate the integral in *B* by ad hoc means.
- Outside *B* (and a similar small cube enclosing $(\pi, ..., \pi)$), show that the integral of $|F(\theta)|$ is negligible in comparison.

Need:
$$I(n, d) = \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} F(\theta_1, \dots, \theta_n) d\theta_1 \cdots d\theta_n.$$

- Define B = a small cube enclosing $(0, \ldots, 0)$.
- Within *B* expand log $F(\theta)$ by Taylor series and estimate the integral in *B* by ad hoc means.
- Outside *B* (and a similar small cube enclosing $(\pi, ..., \pi)$), show that the integral of $|F(\theta)|$ is negligible in comparison.

Result: RG(n, d) =

$$\sqrt{2} \left(2\pi n \lambda^{d+1} (1-\lambda)^{n-d} \right)^{-n/2} \exp\left(\frac{-1+10\lambda-10\lambda^2}{12\lambda(1-\lambda)} + o(1)\right)$$

if $d > n/\log n$. (McKay and Wormald, 1990)

We noticed in 1990 that the expressions for low degree and high degree can be written in the same form. Recall the density $\lambda = d/(n-1)$.

• Suppose we generate a random graph with *n* vertices and each edge independently with probability λ .

We noticed in 1990 that the expressions for low degree and high degree can be written in the same form. Recall the density $\lambda = d/(n-1)$.

- Suppose we generate a random graph with *n* vertices and each edge independently with probability λ .
- Assume incorrectly that the vertex degrees are independent.

This false assumption gives an estimate

$$\widehat{\mathsf{RG}}(n,d) = \left(\lambda^{\lambda}(1-\lambda)^{1-\lambda}\right)^{\binom{n}{2}}\binom{n-1}{d}^{n}.$$

We noticed in 1990 that the expressions for low degree and high degree can be written in the same form. Recall the density $\lambda = d/(n-1)$.

- Suppose we generate a random graph with *n* vertices and each edge independently with probability λ .
- Assume incorrectly that the vertex degrees are independent.

This false assumption gives an estimate

$$\widehat{\mathsf{RG}}(n,d) = \left(\lambda^{\lambda}(1-\lambda)^{1-\lambda}\right)^{\binom{n}{2}}\binom{n-1}{d}^{n}.$$

Theorem. RG(n, d) ~ $\sqrt{2} e^{1/4} \widehat{RG}(n, d)$ for (i) $1 \le d \le o(n^{1/2})$ (McKay and Wormald, 1991) (ii) $n/\log n \le d \le n - n/\log n$ (McKay and Wormald, 1990)

We noticed in 1990 that the expressions for low degree and high degree can be written in the same form. Recall the density $\lambda = d/(n-1)$.

- Suppose we generate a random graph with *n* vertices and each edge independently with probability λ .
- Assume incorrectly that the vertex degrees are independent.

This false assumption gives an estimate

$$\widehat{\mathsf{RG}}(n,d) = \left(\lambda^{\lambda}(1-\lambda)^{1-\lambda}\right)^{\binom{n}{2}}\binom{n-1}{d}^{n}.$$

Theorem. RG(n, d) ~ $\sqrt{2} e^{1/4} \widehat{\text{RG}}(n, d)$ for (i) $1 \le d \le o(n^{1/2})$ (McKay and Wormald, 1991) (ii) $n/\log n \le d \le n - n/\log n$ (McKay and Wormald, 1990) We conjectured that the theorem only requires $1 \le d \le n - 2$.

Extended counting conjecture

We also conjectured the formula for when the degrees vary, but not too much from the average.

Extended counting conjecture

We also conjectured the formula for when the degrees vary, but not too much from the average.

Liebenau and Wormald proved the extended conjecture in 2017.

Theorem.

There is a constant a > 0 such that the extended counting conjecture holds if $\Omega((\log n)^{K}) \leq \overline{d} \leq an$ for all K.

Extended counting conjecture

We also conjectured the formula for when the degrees vary, but not too much from the average.

Liebenau and Wormald proved the extended conjecture in 2017.

Theorem.

There is a constant a > 0 such that the extended counting conjecture holds if $\Omega((\log n)^{K}) \leq \overline{d} \leq an$ for all K.

Amount of irregularity

When $\bar{d} \approx cn$, the theorems we have mentioned require $|d_j - \bar{d}| \leq n^{1/2+\varepsilon}$ for all j (McKay and Wormald), or $|d_j - \bar{d}| \leq n^{3/5-\varepsilon}$ for all j, with c small enough (Liebenau and Wormald).

Greater variation of degree in the dense case

In 2013, Barvinok and Hartigan enumerated graphs with δ -tame degree sequences.

Recall that this requires all degrees to be $\Theta(n)$ but the variation in degrees can be great.

Greater variation of degree in the dense case

In 2013, Barvinok and Hartigan enumerated graphs with δ -tame degree sequences.

Recall that this requires all degrees to be $\Theta(n)$ but the variation in degrees can be great.

Our aim is to achieve a similar variation of degrees but allow the average degree to be much smaller.

Recall: We have a small box *B* surrounding the origin and we want to estimate the integral of a function $F(\theta) = F(\theta_1, ..., \theta_n)$ in *B*.

Recall: We have a small box *B* surrounding the origin and we want to estimate the integral of a function $F(\theta) = F(\theta_1, ..., \theta_n)$ in *B*.

Write $F(\theta) = e^{G(\theta)}$ and expand $G(\theta)$ in a Taylor series. Now suppose we approximate $G(\theta)$ in any way: $G(\theta) = \hat{G}(\theta) + O(\delta)$ where δ is tiny.

Recall: We have a small box *B* surrounding the origin and we want to estimate the integral of a function $F(\theta) = F(\theta_1, ..., \theta_n)$ in *B*.

Write $F(\theta) = e^{G(\theta)}$ and expand $G(\theta)$ in a Taylor series. Now suppose we approximate $G(\theta)$ in any way: $G(\theta) = \hat{G}(\theta) + O(\delta)$ where δ is tiny. If $G(\theta)$ was real, we could write

$$\int_{B} e^{G(\theta)} = (1 + O(\delta)) \int_{B} e^{\hat{G}(\theta)}$$

Recall: We have a small box *B* surrounding the origin and we want to estimate the integral of a function $F(\theta) = F(\theta_1, ..., \theta_n)$ in *B*. Write $F(\theta) = e^{G(\theta)}$ and expand $G(\theta)$ in a Taylor series. Now suppose we approximate $G(\theta)$ in any way: $G(\theta) = \hat{G}(\theta) + O(\delta)$ where δ is tiny. If $G(\theta)$ was real, we could write

$$\int_{B} e^{G(\theta)} = (1 + O(\delta)) \int_{B} e^{\hat{G}(\theta)}$$

However, the correct expression for complex $G(\theta)$ is

$$\int_{B} e^{G(\theta)} = \int_{B} e^{\widehat{G}(\theta)} + O(\delta) \int_{B} |e^{\widehat{G}(\theta)}|.$$

Recall: We have a small box *B* surrounding the origin and we want to estimate the integral of a function $F(\theta) = F(\theta_1, ..., \theta_n)$ in *B*. Write $F(\theta) = e^{G(\theta)}$ and expand $G(\theta)$ in a Taylor series. Now suppose

we approximate $G(\theta)$ in any way: $G(\theta) = \hat{G}(\theta) + O(\delta)$ where δ is tiny.

If $G(\theta)$ was real, we could write

$$\int_{B} e^{G(\theta)} = (1 + O(\delta)) \int_{B} e^{\hat{G}(\theta)}.$$

However, the correct expression for complex $G(\theta)$ is

$$\int_{B} e^{G(\theta)} = \int_{B} e^{\widehat{G}(\theta)} + O(\delta) \int_{B} |e^{\widehat{G}(\theta)}|.$$

In our problem, $\int_{B} |e^{\hat{G}(\theta)}|$ is about $e^{n/\bar{d}}$ times larger than $\int_{B} e^{\hat{G}(\theta)}$, so the effect of approximating $G(\theta)$ is catastrophic if $n/\bar{d} \to \infty$ quickly.

Recall: We have a small box *B* surrounding the origin and we want to estimate the integral of a function $F(\theta) = F(\theta_1, ..., \theta_n)$ in *B*.

Write $F(\theta) = e^{G(\theta)}$ and expand $G(\theta)$ in a Taylor series. Now suppose we approximate $G(\theta)$ in any way: $G(\theta) = \hat{G}(\theta) + O(\delta)$ where δ is tiny.

If $G(\theta)$ was real, we could write

$$\int_{B} e^{G(\boldsymbol{\theta})} = (1 + O(\delta)) \int_{B} e^{\hat{G}(\boldsymbol{\theta})}.$$

However, the correct expression for complex $G(\theta)$ is

$$\int_{B} e^{G(\theta)} = \int_{B} e^{\widehat{G}(\theta)} + O(\delta) \int_{B} |e^{\widehat{G}(\theta)}|.$$

In our problem, $\int_{B} |e^{\hat{G}(\theta)}|$ is about $e^{n/\bar{d}}$ times larger than $\int_{B} e^{\hat{G}(\theta)}$, so the effect of approximating $G(\theta)$ is catastrophic if $n/\bar{d} \to \infty$ quickly.

A second problem is that $\int |F(\theta)|$ outside *B* is no longer small compared to $\int F(\theta)$ inside *B*, so we need a new method for that.

Excursion: cumulants of a random variable

Let Z be a random variable and let \mathbb{E} denote expectation.

The central moments of Z are defined by

$$\mu_2(Z) = \mathbb{E} (Z - \mathbb{E}Z)^2,$$

 $\mu_3(Z) = \mathbb{E} (Z - \mathbb{E}Z)^3,$ etc.

Excursion: cumulants of a random variable

Let Z be a random variable and let \mathbb{E} denote expectation.

The central moments of Z are defined by

$$\mu_2(Z) = \mathbb{E} (Z - \mathbb{E}Z)^2,$$

 $\mu_3(Z) = \mathbb{E} (Z - \mathbb{E}Z)^3,$ etc.

An alternative sequence of numbers is the cumulants:

$$\kappa_{2}(Z) = \mu_{2}(Z),$$

$$\kappa_{3}(Z) = \mu_{3}(Z),$$

$$\kappa_{4}(Z) = \mu_{4}(Z) - 3,$$

$$\kappa_{5}(Z) = \mu_{5}(Z) - 10\mu_{3}(Z), \quad \text{etc.}$$

Excursion: cumulants of a random variable

Let Z be a random variable and let \mathbb{E} denote expectation.

The central moments of Z are defined by

$$\mu_2(Z) = \mathbb{E} (Z - \mathbb{E}Z)^2,$$

 $\mu_3(Z) = \mathbb{E} (Z - \mathbb{E}Z)^3,$ etc.

An alternative sequence of numbers is the cumulants:

$$\begin{aligned} \kappa_2(Z) &= \mu_2(Z), \\ \kappa_3(Z) &= \mu_3(Z), \\ \kappa_4(Z) &= \mu_4(Z) - 3, \\ \kappa_5(Z) &= \mu_5(Z) - 10\mu_3(Z), \end{aligned}$$
 etc.

In general, the cumulants are defined by a formal series:

$$\mathbb{E} e^{tZ} = \sum_{j\geq 0} \frac{t^j}{j!} \mu_j(Z) = \exp\bigg(\sum_{j\geq 0} \frac{t^j}{j!} \kappa_j(Z)\bigg).$$

Cumulants (continued)

Now let $X = (X_1, ..., X_n)$ be a vector of independent random variables and let $f(x_1, ..., x_n)$ be a complex-valued function.

Cumulants (continued)

Now let $X = (X_1, ..., X_n)$ be a vector of independent random variables and let $f(x_1, ..., x_n)$ be a complex-valued function.

Isaev recently found a bound on the remainder when the cumulant series for $f(X_1, \ldots, X_n)$ is truncated:

$$\mathbb{E} e^{f(\boldsymbol{X})} = \exp\left(\sum_{j=0}^{s} \frac{1}{j!} \kappa_j(f(\boldsymbol{X})) + \text{Remainder}\right).$$

Cumulants (continued)

Now let $X = (X_1, ..., X_n)$ be a vector of independent random variables and let $f(x_1, ..., x_n)$ be a complex-valued function.

Isaev recently found a bound on the remainder when the cumulant series for $f(X_1, \ldots, X_n)$ is truncated:

$$\mathbb{E} e^{f(\boldsymbol{X})} = \exp\left(\sum_{j=0}^{s} \frac{1}{j!} \kappa_j(f(\boldsymbol{X})) + \text{Remainder}\right).$$

The bound depends on generalised Lipshitz constants for f.

$$\Delta_1 f = \max |f(x_1, \dots, x_j, \dots, x_n) - f(x_1, \dots, x'_j, \dots, x_n)|$$

$$\Delta_2 f = \max |f(x_1, \dots, x_j, \dots, x_k, \dots, x_n) - f(x_1, \dots, x'_j, \dots, x'_k, \dots, x_n) - f(x_1, \dots, x'_j, \dots, x'_k, \dots, x_n) + f(x_1, \dots, x'_j, \dots, x'_k, \dots, x_n)|, \text{ etc.}$$

Recall: We need to integrate $e^{G(\theta)}$ in a small region *B*.

Recall: We need to integrate $e^{G(\theta)}$ in a small region *B*.

The Taylor expansion for $G(\theta)$ looks like this:

$$G(\boldsymbol{\theta}) = -\boldsymbol{\theta}^{\mathsf{T}} A \, \boldsymbol{\theta} + f(\boldsymbol{\theta}),$$

where A is a real matrix and $f(\theta)$ involves cubic and higher terms.

Recall: We need to integrate $e^{G(\theta)}$ in a small region *B*.

The Taylor expansion for $G(\theta)$ looks like this:

$$G(\boldsymbol{\theta}) = -\boldsymbol{\theta}^{\mathsf{T}} A \, \boldsymbol{\theta} + f(\boldsymbol{\theta}),$$

where A is a real matrix and $f(\theta)$ involves cubic and higher terms.

Now find a matrix S such that $S^T A S = I$ and change variables like $\theta = S\phi$ (a scaling and rotation in *n*-space), while choosing B to be a cube R aligned with the axes after the rotation.

Recall: We need to integrate $e^{G(\theta)}$ in a small region *B*.

The Taylor expansion for $G(\theta)$ looks like this:

$$G(\boldsymbol{\theta}) = -\boldsymbol{\theta}^{\mathsf{T}} A \, \boldsymbol{\theta} + f(\boldsymbol{\theta}),$$

where A is a real matrix and $f(\theta)$ involves cubic and higher terms.

Now find a matrix S such that $S^T A S = I$ and change variables like $\theta = S\phi$ (a scaling and rotation in *n*-space), while choosing B to be a cube R aligned with the axes after the rotation.

This gives us an integral

$$C_1 \int_R e^{-\phi^T \phi + f(S\phi)},$$

which is $C_2 \mathbb{E}e^{f(SX)}$ for X being a vector of independent truncated normal distributions and C_1, C_2 are some stuff we can figure out.

Recall: We need to integrate $e^{G(\theta)}$ in a small region *B*.

The Taylor expansion for $G(\theta)$ looks like this:

$$G(\boldsymbol{\theta}) = -\boldsymbol{\theta}^{\mathsf{T}} A \, \boldsymbol{\theta} + f(\boldsymbol{\theta}),$$

where A is a real matrix and $f(\theta)$ involves cubic and higher terms.

Now find a matrix S such that $S^T A S = I$ and change variables like $\theta = S\phi$ (a scaling and rotation in *n*-space), while choosing B to be a cube R aligned with the axes after the rotation.

This gives us an integral

$$C_1 \int_R e^{-\phi^T \phi + f(S\phi)},$$

which is $C_2 \mathbb{E}e^{f(SX)}$ for X being a vector of independent truncated normal distributions and C_1, C_2 are some stuff we can figure out.

Now apply Isaev's cumulant series theorem to $e^{f(SX)}$.

The answer

The integral outside B is negligible (a difficult technical calculation outside the scope of this talk).

The answer

The integral outside B is negligible (a difficult technical calculation outside the scope of this talk).

If $\bar{d} \ge n^{\sigma}$ for some $\sigma > 0$, the number of graphs with degrees d_1, \ldots, d_n is Stuff $\exp\left(\sum_{j=0}^{2\lceil (1+p)/\sigma\rceil} \frac{1}{j!} \kappa_j(f(S\boldsymbol{X})) + O(n^{-p})\right)$,

for any p.

The answer

The integral outside B is negligible (a difficult technical calculation outside the scope of this talk).

If $\bar{d} \ge n^{\sigma}$ for some $\sigma > 0$, the number of graphs with degrees d_1, \ldots, d_n is

Stuff
$$\exp\left(\sum_{j=0}^{\infty} \frac{1}{j!}\kappa_j(f(S\boldsymbol{X})) + O(n^{-p})\right),$$

for any p.

For $\bar{d} \approx cn$, we allow the degrees to vary by the same amount as Barvinok and Hartigan did.

For $\bar{d} = o(n)$, we only require that each degree lies in $[c_1\bar{d}, c_2\bar{d}]$ for some constants $0 < c_1 \leq c_2$.

The answer for regular graphs

For any J, $G(n, d) = \sqrt{2} \ \widehat{\mathrm{RG}}(n, d) \exp\left(\sum_{j=1}^{J} \frac{p_j(\Lambda)}{\Lambda^j n^{j-1}} + O(\Lambda^{-J-1} n^{-J})\right),$

where $\Lambda = \lambda(1 - \lambda)$ and p_j is a polynomial of degree j.

$$p_{1}(x) = \frac{1}{4}x,$$

$$p_{2}(x) = -\frac{1}{4}x^{2},$$

$$p_{3}(x) = \frac{1}{24}(2-23x)x^{2},$$

$$p_{4}(x) = \frac{1}{24}(22-129x)x^{3},$$

$$p_{5}(x) = -\frac{1}{12}(3-115x+483x^{2})x^{3},$$

$$p_{6}(x) = -\frac{1}{60}(375-6615x+22097x^{2})x^{4}.$$

These are enough to re-prove the regular conjecture for $d \ge n^{1/7+\epsilon}$.

An example of the precision for regular graphs

$$G(n, d) = \sqrt{2} \widehat{\mathsf{RG}}(n, d) \exp\left(\sum_{j=1}^{J} \frac{p_j(\Lambda)}{\Lambda^j n^{j-1}} + O(\Lambda^{-J-1} n^{-J})\right),$$

Here is how it performs for RG(26, 12).

J	value	rel. err.
1	$1.4258993 imes 10^{77}$	1.1×10^{-2}
2	$1.4120471 imes 10^{77}$	1.0×10^{-3}
3	$1.4107433 imes 10^{77}$	$1.1 imes 10^{-4}$
4	$1.4106066 imes 10^{77}$	$1.6 imes 10^{-5}$
5	$1.4105885 imes 10^{77}$	$2.9 imes 10^{-6}$
6	$1.4105853 imes 10^{77}$	$6.5 imes 10^{-7}$
exact	$1.4105844 imes 10^{77}$	<u> </u>

A new puzzle

The expansion seems to work for every d, even constant d, but we have no idea how to prove it.

Generalizing

So far we have considered all graphs with a given degree sequence. Think of that as

"all subgraphs of the complete graph K_n with a given degree sequence".

Generalizing

So far we have considered all graphs with a given degree sequence. Think of that as "all subgraphs of the complete graph K_n with a given degree sequence".

Instead of K_n , we can take a fixed supergraph G and count its subgraphs with a given degree sequence.

Our requirements on G are that it is not too close to bipartite and that it has reasonable expansion properties. This allows us to study the probability of large subgraphs.

Generalizing

So far we have considered all graphs with a given degree sequence. Think of that as "all subgraphs of the complete graph K_n with a given degree sequence".

Instead of K_n , we can take a fixed supergraph G and count its subgraphs with a given degree sequence.

Our requirements on G are that it is not too close to bipartite and that it has reasonable expansion properties. This allows us to study the probability of large subgraphs.

The case where G is bipartite can also be done by similar methods, but we didn't do it yet.