Graphs with specified degrees

Brendan D. McKay
Australian National University

together with

Mikhail Isaev

Monash University

A problem: Count regular graphs

Let $R G(n, d)$ denote the number of labelled regular graphs of order n and degree d.

A problem: Count regular graphs

Let $R G(n, d)$ denote the number of labelled regular graphs of order n and degree d.

A graph that contributes to $R G(8,3)=19355$

A problem: Count regular graphs

Let $R G(n, d)$ denote the number of labelled regular graphs of order n and degree d.

A graph that contributes to $R G(8,3)=19355$

The numbers grow rather quickly, for example $R G(30,9)=18336678373542130513257734368383782619129122809$ 30223000342112435635482956708281040928263924915.

Labelled regular graphs (continued)

For large sizes, computationally efficient exact formulae are only available for $d \leq 4$. We won't discuss those.

Labelled regular graphs (continued)

For large sizes, computationally efficient exact formulae are only available for $d \leq 4$. We won't discuss those.

Our interest is in asymptotic counting, where we want a good approximation for $R G(n, d)$ as $n \rightarrow \infty$ while $d=d(n)$.

We can assume $1 \leq d \leq(n-1) / 2$, since $d=0$ is trivial and $d>(n-1) / 2$ follows by complementation. Also, $n d$ is even.

Labelled regular graphs (continued)

For large sizes, computationally efficient exact formulae are only available for $d \leq 4$. We won't discuss those.

Our interest is in asymptotic counting, where we want a good approximation for $R G(n, d)$ as $n \rightarrow \infty$ while $d=d(n)$.

We can assume $1 \leq d \leq(n-1) / 2$, since $d=0$ is trivial and $d>(n-1) / 2$ follows by complementation. Also, $n d$ is even.

The case of $\operatorname{RG}(n, 2)$ is an elementary exercise.

Labelled regular graphs (continued)

For large sizes, computationally efficient exact formulae are only available for $d \leq 4$. We won't discuss those.

Our interest is in asymptotic counting, where we want a good approximation for $R G(n, d)$ as $n \rightarrow \infty$ while $d=d(n)$.

We can assume $1 \leq d \leq(n-1) / 2$, since $d=0$ is trivial and $d>(n-1) / 2$ follows by complementation. Also, $n d$ is even.

The case of $\operatorname{RG}(n, 2)$ is an elementary exercise.

The case of $\mathrm{RG}(n, 3)$ was solved by Ron Read in his 1958 thesis at the University of London.

Labelled regular graphs (continued)

For large sizes, computationally efficient exact formulae are only available for $d \leq 4$. We won't discuss those.

Our interest is in asymptotic counting, where we want a good approximation for $R G(n, d)$ as $n \rightarrow \infty$ while $d=d(n)$.

We can assume $1 \leq d \leq(n-1) / 2$, since $d=0$ is trivial and $d>(n-1) / 2$ follows by complementation. Also, $n d$ is even.

The case of $\operatorname{RG}(n, 2)$ is an elementary exercise.

The case of $\mathrm{RG}(n, 3)$ was solved by Ron Read in his 1958 thesis at the University of London.

Nothing much then happened for 20 years, until Bender and Canfield, and independently Wormald, solved it for arbitrary constant d.

The pairing (configuration) model for regular graphs
How to make a 3 -regular graph with 8 vertices.

The pairing (configuration) model for regular graphs
How to make a 3 -regular graph with 8 vertices.

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Take 8 groups of 3 dots each.

The pairing (configuration) model for regular graphs

How to make a 3-regular graph with 8 vertices.

Pair the 24 dots together somehow.

The pairing (configuration) model for regular graphs

How to make a 3-regular graph with 8 vertices.

Convert the groups of dots into vertices.
Note the loops and multiple edges.

The pairing (configuration) model for regular graphs
How to make a 3 -regular graph with 8 vertices.

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Try again: Take groups of dots.

The pairing (configuration) model for regular graphs

How to make a 3-regular graph with 8 vertices.

Pair them somehow.

The pairing (configuration) model for regular graphs

How to make a 3-regular graph with 8 vertices.

This time the result is a simple regular graph.

The pairing (configuration) model for regular graphs

How to make a 3-regular graph with 8 vertices.

The pairing (configuration) model for regular graphs

How to make a 3-regular graph with 8 vertices.

The pairing model is the most important tool for counting and studying regular graphs of low degree.

The pairing model used for counting
Consider pairings for order n and degree d.

- There are nd dots.

The pairing model used for counting
Consider pairings for order n and degree d.

- There are nd dots.
- The number of ways to pair them is $\frac{(n d)!}{(n d / 2)!2^{\text {nd } / 2}}$.

The pairing model used for counting

Consider pairings for order n and degree d.

- There are nd dots.
- The number of ways to pair them is $\frac{(n d)!}{(n d / 2)!2^{\text {nd/2 }}}$.
- The result might be a simple graph.

The pairing model used for counting

Consider pairings for order n and degree d.

- There are nd dots.
- The number of ways to pair them is $\frac{(n d)!}{(n d / 2)!2^{n d / 2}}$.
- The result might be a simple graph.
- Each simple graph corresponds to exactly $(d!)^{n}$ pairings.

The pairing model used for counting

Consider pairings for order n and degree d.

- There are nd dots.
- The number of ways to pair them is $\frac{(n d)!}{(n d / 2)!2^{\text {nd/2 }}}$.
- The result might be a simple graph.
- Each simple graph corresponds to exactly (d!) ${ }^{n}$ pairings.

Conclusion

$$
\operatorname{RG}(n, d)=\frac{(n d)!}{(n d / 2)!2^{n d / 2}(d!)^{n}} P(n, d),
$$

where $P(n, d)$ is the probability that a random pairing gives a simple graph.

The pairing model used for counting (continued)
The problem has reduced to finding
$P(n, d)=$ the probability that a random pairing gives a simple graph.

The pairing model used for counting (continued)
The problem has reduced to finding
$P(n, d)=$ the probability that a random pairing gives a simple graph.
For $d=o(\sqrt{\log n}), P(n, d)$ can be estimated by inclusion-exclusion or the method of moments (Bollobás, 1980).

The pairing model used for counting (continued)
The problem has reduced to finding
$P(n, d)=$ the probability that a random pairing gives a simple graph.
For $d=o(\sqrt{\log n}), P(n, d)$ can be estimated by inclusion-exclusion or the method of moments (Bollobás, 1980).

$$
\text { Result: } \quad P(n, d) \approx \exp \left(-\frac{d^{2}-1}{4}\right) .
$$

The pairing model used for counting (continued)

The problem has reduced to finding
$P(n, d)=$ the probability that a random pairing gives a simple graph.
For $d=o(\sqrt{\log n}), P(n, d)$ can be estimated by inclusion-exclusion or the method of moments (Bollobás, 1980).

$$
\text { Result: } \quad P(n, d) \approx \exp \left(-\frac{d^{2}-1}{4}\right) .
$$

If we attempt to let $d \rightarrow \infty$ too quickly, the terms in the inclusionexclusion series become extremely large compared to the sum of the terms, so it becomes increasingly difficult to get a good estimate.

The pairing model and switchings

The pairing model and switchings

Consider a pairing.

The pairing model and switchings

There is a loop.

The pairing model and switchings

Choose some other edge.

The pairing model and switchings

Switch those two edges with another two.

The pairing model and switchings

Now the loop is gone.

The pairing model and switchings

But there is still a double edge.

The pairing model and switchings

Choose some other edge.

The pairing model and switchings

Switch two edges.

The pairing model and switchings

Now we have a simple graph.

The pairing model and switchings

Now we have a simple graph.
Let $N(s, t)$ be the number of pairings with s double edges and t loops. Using switchings we get estimates of

$$
\frac{N(s, t+1)}{N(s, t)} \text { and } \frac{N(s+1,0)}{N(s, 0)}
$$

for significant s, t.
From this we can derive a positive term series for $1 / P(n, d)$.

The pairing model and switchings

Now we have a simple graph.
Let $N(s, t)$ be the number of pairings with s double edges and t loops. Using switchings we get estimates of

$$
\frac{N(s, t+1)}{N(s, t)} \text { and } \frac{N(s+1,0)}{N(s, 0)}
$$

for significant s, t.
From this we can derive a positive term series for $1 / P(n, d)$.
Result: Same formula, for $d=o\left(n^{1 / 3}\right)$. (McKay, 1985)

The pairing model and switchings (continued)

In 1991, McKay and Wormald used switchings of 3 edges to prove that

$$
\operatorname{RG}(n, d)=\frac{(n d)!}{(n d / 2)!2^{n d / 2}(d!)^{n}} \exp \left(-\frac{d^{2}-1}{4}-\frac{d^{3}}{12 n}+o(1)\right)
$$

for $d=o\left(n^{1 / 2}\right)$.

Gao and Wormald (2016) improved the coverage of highly-irregular degree sequences.

But, how to make one graph uniformly at random?
Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

0			0				
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Take groups of dots according to the required degrees.

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Convert the groups of dots into vertices.
Note the loops and multiple edges.

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

0			0				
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Try again: Take groups of dots.

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

This time the result is simple.

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

The key observation is that every simple graph with the given degree sequence is equally likely to be generated.

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

The key observation is that every simple graph with the given degree sequence is equally likely to be generated.

Alas, this is only efficient for low degree. For higher degree, too many attempts are required before a simple graph is obtained.

Accept-reject strategy

Consider two sets and a relation between them.

B

Accept-reject strategy

Consider two sets and a relation between them.

Suppose we know how to generate a random element of A. How do we generate a random element of B ?

Accept-reject strategy

Accept-reject strategy

1. Choose random $a \in A$.

Accept-reject strategy

1. Choose random $a \in A$.
2. Take a random edge to B.

Accept-reject strategy

1. Choose random $a \in A$.
2. Take a random edge to B.
3. Accept $b \in B$ with probability proportional to $\operatorname{deg}(a) / \operatorname{deg}(b)$. If unsuccessful, try again.

Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Take groups of dots according to the required degrees.

Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.

Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.
Let's call this a random member of $G(1,2)$ because it has 1 loop and 2 double edges.

Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.
Let's call this a random member of $G(1,2)$ because it has 1 loop and 2 double edges.

Using an accept-reject strategy, we can transfer uniform randomness:

$$
G(1,2) \rightarrow G(1,1) \rightarrow G(1,0) \rightarrow G(0,0)
$$

and then we will have a uniformly random simple graph.

Simple graphs with degrees $4,3,3,4,3,3,3,3$ (continued)

Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

A random member of $G(2,1)$.

Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Choose an edge in a double edge and one other.

Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Swap for two other edges.

Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Possibly accept to get a member of $G(1,1)$.

Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Possibly accept to get a member of $G(1,1)$.
In the regular case, McKay and Wormald used this for $d=o\left(n^{1 / 3}\right)$. Gao and Wormald substantially improved it and got to $d=o\left(n^{1 / 2}\right)$.

Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Possibly accept to get a member of $G(1,1)$.
In the regular case, McKay and Wormald used this for $d=o\left(n^{1 / 3}\right)$.
Gao and Wormald substantially improved it and got to $d=o\left(n^{1 / 2}\right)$.
There are no known polynomial expected-time algorithms to generate uniformly random regular graphs for degrees over $n^{1 / 2}$.

Iterative methods exist (e.g. Markov chains) that approach a uniform distribution asymptotically.

Random graphs with approximately the given degrees
Applications don't necessarily want all the graphs generated to have exactly the specified degrees.

Random graphs with approximately the given degrees

Applications don't necessarily want all the graphs generated to have exactly the specified degrees.

Independent edge models

This class of random graph generalizes Erdős-Rényi random graphs.
For each j, k, there is a probability $p_{j k}$ of edge $j k$ being present. The choice is made independently for each j, k.

Random graphs with approximately the given degrees

Applications don't necessarily want all the graphs generated to have exactly the specified degrees.

Independent edge models

This class of random graph generalizes Erdős-Rényi random graphs.
For each j, k, there is a probability $p_{j k}$ of edge $j k$ being present. The choice is made independently for each j, k.

The Chung-Lu Model defines

$$
p_{j k}=\frac{w_{j} w_{k}}{\sum_{i} w_{i}}
$$

where w_{1}, \ldots, w_{n} are some positive weights.
This is very simple to implement and easy to analyse.
It is not true that the probability of a graph depends only on its degree sequence.

The β-model of random graph

Let $\beta_{1}, \ldots, \beta_{n}$ be some real numbers and define

$$
p_{j k}=\frac{e^{\beta_{j}+\beta_{j}}}{1+e^{\beta_{j}+\beta_{j}}} .
$$

This independent-edge model uniquely has the property that the probability of any graph depends only on its degree sequence.

The β-model of random graph

Let $\beta_{1}, \ldots, \beta_{n}$ be some real numbers and define

$$
p_{j k}=\frac{e^{\beta_{j}+\beta_{j}}}{1+e^{\beta_{j}+\beta_{j}}} .
$$

This independent-edge model uniquely has the property that the probability of any graph depends only on its degree sequence.

Now suppose we have a degree sequence d_{1}, \ldots, d_{n} and further wish that the expectation of the degree of each vertex j is d_{j}. This gives

$$
\begin{equation*}
\sum_{k \neq j} p_{j k}=d_{j}, \quad(1 \leq j \leq n) \tag{*}
\end{equation*}
$$

The β-model of random graph

Let $\beta_{1}, \ldots, \beta_{n}$ be some real numbers and define

$$
p_{j k}=\frac{e^{\beta_{j}+\beta_{j}}}{1+e^{\beta_{j}+\beta_{j}}}
$$

This independent-edge model uniquely has the property that the probability of any graph depends only on its degree sequence.

Now suppose we have a degree sequence d_{1}, \ldots, d_{n} and further wish that the expectation of the degree of each vertex j is d_{j}. This gives

$$
\begin{equation*}
\sum_{k \neq j} p_{j k}=d_{j}, \quad(1 \leq j \leq n) \tag{*}
\end{equation*}
$$

Under very weak conditions, (*) has a unique solution. (many authors, 2011-2012).

The β-model of random graph

Let $\beta_{1}, \ldots, \beta_{n}$ be some real numbers and define

$$
p_{j k}=\frac{e^{\beta_{j}+\beta_{j}}}{1+e^{\beta_{j}+\beta_{j}}} .
$$

This independent-edge model uniquely has the property that the probability of any graph depends only on its degree sequence.

Now suppose we have a degree sequence d_{1}, \ldots, d_{n} and further wish that the expectation of the degree of each vertex j is d_{j}. This gives

$$
\begin{equation*}
\sum_{k \neq j} p_{j k}=d_{j}, \quad(1 \leq j \leq n) \tag{*}
\end{equation*}
$$

Under very weak conditions, (*) has a unique solution. (many authors, 2011-2012).

Call this the $\boldsymbol{\beta}$-model for $\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{n}$.

The β-model for d_{1}, \ldots, d_{n}
Barvinok and Hartigan defined the δ-tame class of degree sequences. Approximately: $\left|\beta_{j}\right| \leq C$ for all j, for some constant C.
All degrees are $\Theta(n)$ but the variation can be great. For example all degree sequences with

$$
0.25 n \leq d_{j} \leq 0.74 n \quad(1 \leq j \leq n)
$$

are included.

The β-model for d_{1}, \ldots, d_{n}
Barvinok and Hartigan defined the δ-tame class of degree sequences. Approximately: $\left|\beta_{j}\right| \leq C$ for all j, for some constant C.

All degrees are $\Theta(n)$ but the variation can be great. For example all degree sequences with

$$
0.25 n \leq d_{j} \leq 0.74 n \quad(1 \leq j \leq n)
$$

are included.
Fix $Y \subseteq\binom{[n]}{2}$. Define two random variables:
$X=|E(G) \cap Y|$ when G is a uniformly random graph with degrees d_{1}, \ldots, d_{n};
$X_{\beta}=|E(G) \cap Y|$ when G is generated with the β-model for d_{1}, \ldots, d_{n}.
The question is how similar are X and X_{β}.

The β-model for d_{1}, \ldots, d_{n}
Assume d_{1}, \ldots, d_{n} is δ-tame.

The β-model for d_{1}, \ldots, d_{n}
Assume d_{1}, \ldots, d_{n} is δ-tame.
Barvinok and Hartigan (2012) proved:
For $|Y| \geq \delta n^{2}$,

$$
\left(1-\delta n^{-1 / 2} \log n\right) \mathbb{E} X_{\beta} \leq X \leq\left(1+\delta n^{-1 / 2} \log n\right) \mathbb{E} X_{\beta}
$$

with probability $1-n^{-\Omega(n)}$.

The β-model for d_{1}, \ldots, d_{n}
Assume d_{1}, \ldots, d_{n} is δ-tame.
Barvinok and Hartigan (2012) proved:
For $|Y| \geq \delta n^{2}$,

$$
\left(1-\delta n^{-1 / 2} \log n\right) \mathbb{E} X_{\beta} \leq X \leq\left(1+\delta n^{-1 / 2} \log n\right) \mathbb{E} X_{\beta}
$$

with probability $1-n^{-\Omega(n)}$.

Isaev and McKay (2016) proved:
For any Y and any $\gamma>0$,

$$
\operatorname{Prob}\left(\left|X-\mathbb{E} X_{\beta}\right| \geq \gamma|Y|^{1 / 2}\right) \geq 1-c e^{-2 \gamma \min \left\{\gamma, n^{1 / 6}(\log n)^{-3}\right\}}
$$

where c depends only on δ.

The β-model for d_{1}, \ldots, d_{n}
Assume d_{1}, \ldots, d_{n} is δ-tame.
Barvinok and Hartigan (2012) proved:
For $|Y| \geq \delta n^{2}$,

$$
\left(1-\delta n^{-1 / 2} \log n\right) \mathbb{E} X_{\beta} \leq X \leq\left(1+\delta n^{-1 / 2} \log n\right) \mathbb{E} X_{\beta}
$$

with probability $1-n^{-\Omega(n)}$.

Isaev and McKay (2016) proved:
For any Y and any $\gamma>0$,

$$
\operatorname{Prob}\left(\left|X-\mathbb{E} X_{\beta}\right| \geq \gamma|Y|^{1 / 2}\right) \geq 1-c e^{-2 \gamma \min \left\{\gamma, n^{1 / 6}(\log n)^{-3}\right\}},
$$

where c depends only on δ.

The key to the improvement was a way to estimate n-dimensional complex integrals by casting them as complex martingales.

Counting regular graphs of high degree

The number of regular graphs can be written as a coefficient in a generating function:

$$
\operatorname{RG}(n, d)=\left[x_{1}^{d} \cdots x_{n}^{d}\right] \prod_{j<k}\left(1+x_{j} x_{k}\right) .
$$

Counting regular graphs of high degree

The number of regular graphs can be written as a coefficient in a generating function:

$$
\operatorname{RG}(n, d)=\left[x_{1}^{d} \cdots x_{n}^{d}\right] \prod_{j<k}\left(1+x_{j} x_{k}\right)
$$

By applying Cauchy's Residue Theorem, we have

$$
\mathrm{RG}(n, d)=\frac{1}{(2 \pi i)^{n}} \oint \cdots \oint \frac{\prod_{j<k}\left(1+x_{j} x_{k}\right)}{x_{1}^{d+1} \cdots x_{n}^{d+1}} d x_{1} \cdots d x_{n}
$$

where each integration is along a contour enclosing the origin once anticlockwise.

Counting regular graphs of high degree

The number of regular graphs can be written as a coefficient in a generating function:

$$
\operatorname{RG}(n, d)=\left[x_{1}^{d} \cdots x_{n}^{d}\right] \prod_{j<k}\left(1+x_{j} x_{k}\right)
$$

By applying Cauchy's Residue Theorem, we have

$$
R G(n, d)=\frac{1}{(2 \pi i)^{n}} \oint \cdots \oint \frac{\prod_{j<k}\left(1+x_{j} x_{k}\right)}{x_{1}^{d+1} \cdots x_{n}^{d+1}} d x_{1} \cdots d x_{n}
$$

where each integration is along a contour enclosing the origin once anticlockwise.

Let's choose our contours to be circles:

$$
x_{j}=r e^{i \theta_{j}}, \text { where } r=\sqrt{\frac{\lambda}{1-\lambda}}, \quad \lambda=\frac{d}{n-1}
$$

The case of high degree (continued)

Taking some stuff outside the integral:

$$
\operatorname{RG}(n, d)=\frac{\left(1+r^{2}\right)^{n}\binom{n}{2}}{\left(2 \pi r^{d}\right)^{n}} I(n, d)
$$

where

$$
I(n, d)=\int_{-\pi}^{\pi} \ldots \int_{-\pi}^{\pi} F\left(\theta_{1}, \ldots, \theta_{n}\right) d \theta_{1} \cdots d \theta_{n}
$$

where

$$
F(\boldsymbol{\theta})=\frac{\prod_{j<k}\left(1+\lambda\left(e^{i\left(\theta_{j}+\theta_{k}\right)}-1\right)\right)}{\exp \left(i d \sum_{j} \theta_{j}\right)} .
$$

The case of high degree (continued)

Taking some stuff outside the integral:

$$
\operatorname{RG}(n, d)=\frac{\left(1+r^{2}\right)^{n}\binom{n}{2}}{\left(2 \pi r^{d}\right)^{n}} I(n, d)
$$

where

$$
I(n, d)=\int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} F\left(\theta_{1}, \ldots, \theta_{n}\right) d \theta_{1} \cdots d \theta_{n}
$$

where

$$
F(\boldsymbol{\theta})=\frac{\prod_{j<k}\left(1+\lambda\left(e^{i\left(\theta_{j}+\theta_{k}\right)}-1\right)\right)}{\exp \left(i d \sum_{j} \theta_{j}\right)}
$$

$|F(\theta)| \leq 1$ always, which is achieved only at
$\left(\theta_{1}, \ldots, \theta_{n}\right)=(0, \ldots, 0)$ and $\left(\theta_{1}, \ldots, \theta_{n}\right)=(\pi, \ldots, \pi)$.

The case of high degree (continued)

$$
\text { Need: } I(n, d)=\int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} F\left(\theta_{1}, \ldots, \theta_{n}\right) d \theta_{1} \cdots d \theta_{n} \text {. }
$$

- Define $B=$ a small cube enclosing ($0, \ldots, 0$).

The case of high degree (continued)

$$
\text { Need: } I(n, d)=\int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} F\left(\theta_{1}, \ldots, \theta_{n}\right) d \theta_{1} \cdots d \theta_{n} \text {. }
$$

- Define $B=$ a small cube enclosing ($0, \ldots, 0$).
- Within B expand $\log F(\theta)$ by Taylor series and estimate the integral in B by ad hoc means.

The case of high degree (continued)

$$
\text { Need: } I(n, d)=\int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} F\left(\theta_{1}, \ldots, \theta_{n}\right) d \theta_{1} \cdots d \theta_{n} \text {. }
$$

- Define $B=$ a small cube enclosing ($0, \ldots, 0$).
- Within B expand $\log F(\theta)$ by Taylor series and estimate the integral in B by ad hoc means.
- Outside B (and a similar small cube enclosing (π, \ldots, π)), show that the integral of $|F(\theta)|$ is negligible in comparison.

The case of high degree (continued)

$$
\text { Need: } I(n, d)=\int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} F\left(\theta_{1}, \ldots, \theta_{n}\right) d \theta_{1} \cdots d \theta_{n} \text {. }
$$

- Define $B=$ a small cube enclosing ($0, \ldots, 0$).
- Within B expand $\log F(\theta)$ by Taylor series and estimate the integral in B by ad hoc means.
- Outside B (and a similar small cube enclosing (π, \ldots, π)), show that the integral of $|F(\theta)|$ is negligible in comparison.

Result: $\quad \operatorname{RG}(n, d)=$

$$
\sqrt{2}\left(2 \pi n \lambda^{d+1}(1-\lambda)^{n-d}\right)^{-n / 2} \exp \left(\frac{-1+10 \lambda-10 \lambda^{2}}{12 \lambda(1-\lambda)}+o(1)\right)
$$

if $d>n / \log n$. (McKay and Wormald, 1990)

The regular graph conjecture

We noticed in 1990 that the expressions for low degree and high degree can be written in the same form. Recall the density $\lambda=d /(n-1)$.

- Suppose we generate a random graph with n vertices and each edge independently with probability λ.

The regular graph conjecture

We noticed in 1990 that the expressions for low degree and high degree can be written in the same form. Recall the density $\lambda=d /(n-1)$.

- Suppose we generate a random graph with n vertices and each edge independently with probability λ.
- Assume incorrectly that the vertex degrees are independent.

This false assumption gives an estimate

$$
\widehat{\mathrm{RG}}(n, d)=\left(\lambda^{\lambda}(1-\lambda)^{1-\lambda}\right)^{\binom{n}{2}}\binom{n-1}{d}^{n}
$$

The regular graph conjecture

We noticed in 1990 that the expressions for low degree and high degree can be written in the same form. Recall the density $\lambda=d /(n-1)$.

- Suppose we generate a random graph with n vertices and each edge independently with probability λ.
- Assume incorrectly that the vertex degrees are independent.

This false assumption gives an estimate

$$
\widehat{\mathrm{RG}}(n, d)=\left(\lambda^{\lambda}(1-\lambda)^{1-\lambda}\right)^{\binom{n}{2}}\binom{n-1}{d}^{n}
$$

Theorem. RG $(n, d) \sim \sqrt{2} e^{1 / 4} \widehat{R G}(n, d)$ for
(i) $1 \leq d \leq o\left(n^{1 / 2}\right) \quad$ (McKay and Wormald, 1991)
(ii) $n / \log n \leq d \leq n-n / \log n$ (McKay and Wormald, 1990)

The regular graph conjecture

We noticed in 1990 that the expressions for low degree and high degree can be written in the same form. Recall the density $\lambda=d /(n-1)$.

- Suppose we generate a random graph with n vertices and each edge independently with probability λ.
- Assume incorrectly that the vertex degrees are independent.

This false assumption gives an estimate

$$
\widehat{\mathrm{RG}}(n, d)=\left(\lambda^{\lambda}(1-\lambda)^{1-\lambda}\right)^{\binom{n}{2}}\binom{n-1}{d}^{n}
$$

Theorem. $\mathrm{RG}(n, d) \sim \sqrt{2} e^{1 / 4} \widehat{\mathrm{RG}}(n, d)$ for
(i) $1 \leq d \leq o\left(n^{1 / 2}\right) \quad$ (McKay and Wormald, 1991)
(ii) $n / \log n \leq d \leq n-n / \log n \quad$ (McKay and Wormald, 1990)

We conjectured that the theorem only requires $1 \leq d \leq n-2$.

Extended counting conjecture

We also conjectured the formula for when the degrees vary, but not too much from the average.

Extended counting conjecture

We also conjectured the formula for when the degrees vary, but not too much from the average.

Liebenau and Wormald proved the extended conjecture in 2017.

Theorem.

There is a constant $a>0$ such that the extended counting conjecture holds if $\Omega\left((\log n)^{K}\right) \leq \bar{d} \leq$ an for all K.

Extended counting conjecture

We also conjectured the formula for when the degrees vary, but not too much from the average.

Liebenau and Wormald proved the extended conjecture in 2017.

Theorem.

There is a constant $a>0$ such that the extended counting conjecture holds if $\Omega\left((\log n)^{K}\right) \leq \bar{d} \leq$ an for all K.

Amount of irregularity

When $\bar{d} \approx c n$, the theorems we have mentioned require
$\left|d_{j}-\bar{d}\right| \leq n^{1 / 2+\varepsilon}$ for all j (McKay and Wormald), or
$\left|d_{j}-\bar{d}\right| \leq n^{3 / 5-\varepsilon}$ for all j, with c small enough (Liebenau and Wormald).

Greater variation of degree in the dense case

In 2013, Barvinok and Hartigan enumerated graphs with δ-tame degree sequences.

Recall that this requires all degrees to be $\Theta(n)$ but the variation in degrees can be great.

Greater variation of degree in the dense case

In 2013, Barvinok and Hartigan enumerated graphs with δ-tame degree sequences.

Recall that this requires all degrees to be $\Theta(n)$ but the variation in degrees can be great.

Our aim is to achieve a similar variation of degrees but allow the average degree to be much smaller.

Why is the integral method difficult for smaller degree?

Recall: We have a small box B surrounding the origin and we want to estimate the integral of a function $F(\theta)=F\left(\theta_{1}, \ldots, \theta_{n}\right)$ in B.

Why is the integral method difficult for smaller degree?

Recall: We have a small box B surrounding the origin and we want to estimate the integral of a function $F(\theta)=F\left(\theta_{1}, \ldots, \theta_{n}\right)$ in B.
Write $F(\theta)=e^{G(\theta)}$ and expand $G(\theta)$ in a Taylor series. Now suppose we approximate $G(\theta)$ in any way: $G(\theta)=\widehat{G}(\theta)+O(\delta)$ where δ is tiny.

Why is the integral method difficult for smaller degree?

Recall: We have a small box B surrounding the origin and we want to estimate the integral of a function $F(\theta)=F\left(\theta_{1}, \ldots, \theta_{n}\right)$ in B.
Write $F(\theta)=e^{G(\theta)}$ and expand $G(\theta)$ in a Taylor series. Now suppose we approximate $G(\theta)$ in any way: $G(\theta)=\widehat{G}(\theta)+O(\delta)$ where δ is tiny. If $G(\theta)$ was real, we could write

$$
\int_{B} e^{G(\theta)}=(1+O(\delta)) \int_{B} e^{\hat{G}(\theta)}
$$

Why is the integral method difficult for smaller degree?

Recall: We have a small box B surrounding the origin and we want to estimate the integral of a function $F(\theta)=F\left(\theta_{1}, \ldots, \theta_{n}\right)$ in B.
Write $F(\theta)=e^{G(\theta)}$ and expand $G(\theta)$ in a Taylor series. Now suppose we approximate $G(\theta)$ in any way: $G(\theta)=\widehat{G}(\theta)+O(\delta)$ where δ is tiny. If $G(\theta)$ was real, we could write

$$
\int_{B} e^{G(\theta)}=(1+O(\delta)) \int_{B} e^{\hat{G}(\theta)}
$$

However, the correct expression for complex $G(\theta)$ is

$$
\int_{B} e^{G(\theta)}=\int_{B} e^{\hat{G}(\theta)}+O(\delta) \int_{B}\left|e^{\hat{G}(\theta)}\right| .
$$

Why is the integral method difficult for smaller degree?

Recall: We have a small box B surrounding the origin and we want to estimate the integral of a function $F(\theta)=F\left(\theta_{1}, \ldots, \theta_{n}\right)$ in B.

Write $F(\theta)=e^{G(\theta)}$ and expand $G(\theta)$ in a Taylor series. Now suppose we approximate $G(\theta)$ in any way: $G(\theta)=\hat{G}(\boldsymbol{\theta})+O(\delta)$ where δ is tiny. If $G(\theta)$ was real, we could write

$$
\int_{B} e^{G(\theta)}=(1+O(\delta)) \int_{B} e^{\hat{G}(\theta)}
$$

However, the correct expression for complex $G(\theta)$ is

$$
\int_{B} e^{G(\theta)}=\int_{B} e^{\hat{G}(\theta)}+O(\delta) \int_{B}\left|e^{\hat{G}(\theta)}\right|
$$

In our problem, $\int_{B}\left|e^{\hat{G}(\theta)}\right|$ is about $e^{n / \bar{d}}$ times larger than $\int_{B} e^{\hat{G}(\theta)}$, so the effect of approximating $G(\theta)$ is catastrophic if $n / \bar{d} \rightarrow \infty$ quickly.

Why is the integral method difficult for smaller degree?

Recall: We have a small box B surrounding the origin and we want to estimate the integral of a function $F(\theta)=F\left(\theta_{1}, \ldots, \theta_{n}\right)$ in B.

Write $F(\theta)=e^{G(\theta)}$ and expand $G(\theta)$ in a Taylor series. Now suppose we approximate $G(\theta)$ in any way: $G(\theta)=\hat{G}(\boldsymbol{\theta})+O(\delta)$ where δ is tiny. If $G(\theta)$ was real, we could write

$$
\int_{B} e^{G(\theta)}=(1+O(\delta)) \int_{B} e^{\hat{G}(\theta)}
$$

However, the correct expression for complex $G(\theta)$ is

$$
\int_{B} e^{G(\theta)}=\int_{B} e^{\hat{G}(\theta)}+O(\delta) \int_{B}\left|e^{\hat{G}(\theta)}\right|
$$

In our problem, $\int_{B}\left|e^{\hat{G}(\theta)}\right|$ is about $e^{n / \bar{d}}$ times larger than $\int_{B} e^{\hat{G}(\theta)}$, so the effect of approximating $G(\theta)$ is catastrophic if $n / \bar{d} \rightarrow \infty$ quickly.

A second problem is that $\int|F(\theta)|$ outside B is no longer small compared to $\int F(\theta)$ inside B, so we need a new method for that.

Excursion: cumulants of a random variable

Let Z be a random variable and let \mathbb{E} denote expectation.
The central moments of Z are defined by

$$
\begin{aligned}
& \mu_{2}(Z)=\mathbb{E}(Z-\mathbb{E} Z)^{2} \\
& \mu_{3}(Z)=\mathbb{E}(Z-\mathbb{E} Z)^{3}, \quad \text { etc. }
\end{aligned}
$$

Excursion: cumulants of a random variable

Let Z be a random variable and let \mathbb{E} denote expectation.
The central moments of Z are defined by

$$
\begin{aligned}
& \mu_{2}(Z)=\mathbb{E}(Z-\mathbb{E} Z)^{2}, \\
& \mu_{3}(Z)=\mathbb{E}(Z-\mathbb{E} Z)^{3}, \quad \text { etc. }
\end{aligned}
$$

An alternative sequence of numbers is the cumulants:

$$
\begin{aligned}
& \kappa_{2}(Z)=\mu_{2}(Z) \\
& \kappa_{3}(Z)=\mu_{3}(Z) \\
& \kappa_{4}(Z)=\mu_{4}(Z)-3 \\
& \kappa_{5}(Z)=\mu_{5}(Z)-10 \mu_{3}(Z), \quad \text { etc. }
\end{aligned}
$$

Excursion: cumulants of a random variable

Let Z be a random variable and let \mathbb{E} denote expectation.
The central moments of Z are defined by

$$
\begin{aligned}
& \mu_{2}(Z)=\mathbb{E}(Z-\mathbb{E} Z)^{2}, \\
& \mu_{3}(Z)=\mathbb{E}(Z-\mathbb{E} Z)^{3}, \quad \text { etc. }
\end{aligned}
$$

An alternative sequence of numbers is the cumulants:

$$
\begin{aligned}
& \kappa_{2}(Z)=\mu_{2}(Z) \\
& \kappa_{3}(Z)=\mu_{3}(Z) \\
& \kappa_{4}(Z)=\mu_{4}(Z)-3 \\
& \kappa_{5}(Z)=\mu_{5}(Z)-10 \mu_{3}(Z), \quad \text { etc. }
\end{aligned}
$$

In general, the cumulants are defined by a formal series:

$$
\mathbb{E} e^{t Z}=\sum_{j \geq 0} \frac{t^{j}}{j!} \mu_{j}(Z)=\exp \left(\sum_{j \geq 0} \frac{t^{j}}{j!} \kappa_{j}(Z)\right) .
$$

Cumulants (continued)

Now let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a vector of independent random variables and let $f\left(x_{1}, \ldots, x_{n}\right)$ be a complex-valued function.

Cumulants (continued)

Now let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a vector of independent random variables and let $f\left(x_{1}, \ldots, x_{n}\right)$ be a complex-valued function.

Isaev recently found a bound on the remainder when the cumulant series for $f\left(X_{1}, \ldots, X_{n}\right)$ is truncated:

$$
\mathbb{E} e^{f(\boldsymbol{X})}=\exp \left(\sum_{j=0}^{s} \frac{1}{j!} \kappa_{j}(f(\boldsymbol{X}))+\text { Remainder }\right)
$$

Cumulants (continued)

Now let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a vector of independent random variables and let $f\left(x_{1}, \ldots, x_{n}\right)$ be a complex-valued function.

Isaev recently found a bound on the remainder when the cumulant series for $f\left(X_{1}, \ldots, X_{n}\right)$ is truncated:

$$
\mathbb{E} e^{f(X)}=\exp \left(\sum_{j=0}^{s} \frac{1}{j!} \kappa_{j}(f(\boldsymbol{X}))+\text { Remainder }\right)
$$

The bound depends on generalised Lipshitz constants for f.

$$
\begin{aligned}
\Delta_{1} f=\max & \mid f\left(x_{1}, \ldots, x_{j}, \ldots, x_{n}\right) \\
& \quad-f\left(x_{1}, \ldots, x_{j}^{\prime}, \ldots, x_{n}\right) \mid \\
\Delta_{2} f=\max & \mid f\left(x_{1}, \ldots, x_{j}, \ldots, x_{k}, \ldots, x_{n}\right) \\
& \quad-f\left(x_{1}, \ldots, x_{j}^{\prime}, \ldots, x_{k}, \ldots, x_{n}\right) \\
& \quad-f\left(x_{1}, \ldots, x_{j}, \ldots, x_{k}^{\prime}, \ldots, x_{n}\right) \\
& +f\left(x_{1}, \ldots, x_{j}^{\prime}, \ldots, x_{k}^{\prime}, \ldots, x_{n}\right) \mid, \text { etc. }
\end{aligned}
$$

What do cumulants have to do with our problem?

Recall: We need to integrate $e^{G(\theta)}$ in a small region B.

What do cumulants have to do with our problem?

Recall: We need to integrate $e^{G(\theta)}$ in a small region B.
The Taylor expansion for $G(\boldsymbol{\theta})$ looks like this:

$$
G(\theta)=-\theta^{\top} A \theta+f(\theta),
$$

where A is a real matrix and $f(\theta)$ involves cubic and higher terms.

What do cumulants have to do with our problem?

Recall: We need to integrate $e^{G(\theta)}$ in a small region B.
The Taylor expansion for $G(\boldsymbol{\theta})$ looks like this:

$$
G(\theta)=-\theta^{\top} A \theta+f(\theta)
$$

where A is a real matrix and $f(\theta)$ involves cubic and higher terms.
Now find a matrix S such that $S^{\top} A S=1$ and change variables like $\theta=S \boldsymbol{\phi}$ (a scaling and rotation in n-space), while choosing B to be a cube R aligned with the axes after the rotation.

What do cumulants have to do with our problem?

Recall: We need to integrate $e^{G(\theta)}$ in a small region B.
The Taylor expansion for $G(\boldsymbol{\theta})$ looks like this:

$$
G(\theta)=-\theta^{\top} A \theta+f(\theta),
$$

where A is a real matrix and $f(\theta)$ involves cubic and higher terms.
Now find a matrix S such that $S^{\top} A S=1$ and change variables like $\theta=S \boldsymbol{\phi}$ (a scaling and rotation in n-space), while choosing B to be a cube R aligned with the axes after the rotation.
This gives us an integral

$$
C_{1} \int_{R} e^{-\phi^{\top} \phi+f(S \phi)},
$$

which is $C_{2} \mathbb{E} e^{f(S X)}$ for X being a vector of independent truncated normal distributions and C_{1}, C_{2} are some stuff we can figure out.

What do cumulants have to do with our problem?

Recall: We need to integrate $e^{G(\theta)}$ in a small region B.
The Taylor expansion for $G(\theta)$ looks like this:

$$
G(\theta)=-\theta^{\top} A \theta+f(\theta),
$$

where A is a real matrix and $f(\theta)$ involves cubic and higher terms.
Now find a matrix S such that $S^{\top} A S=1$ and change variables like $\theta=S \boldsymbol{\phi}$ (a scaling and rotation in n-space), while choosing B to be a cube R aligned with the axes after the rotation.

This gives us an integral

$$
C_{1} \int_{R} e^{-\phi^{\top} \phi+f(S \phi)},
$$

which is $C_{2} \mathbb{E} e^{f(S X)}$ for X being a vector of independent truncated normal distributions and C_{1}, C_{2} are some stuff we can figure out.

Now apply Isaev's cumulant series theorem to $e^{f(S X)}$.

The answer

The integral outside B is negligible (a difficult technical calculation outside the scope of this talk).

The answer

The integral outside B is negligible (a difficult technical calculation outside the scope of this talk).

If $\bar{d} \geq n^{\sigma}$ for some $\sigma>0$, the number of graphs with degrees d_{1}, \ldots, d_{n} is

$$
\text { Stuff } \exp \left(\sum_{j=0}^{2\lceil(1+p) / \sigma\rceil} \frac{1}{j!} \kappa_{j}(f(S X))+O\left(n^{-p}\right)\right)
$$

for any p.

The answer

The integral outside B is negligible (a difficult technical calculation outside the scope of this talk).

If $\bar{d} \geq n^{\sigma}$ for some $\sigma>0$, the number of graphs with degrees d_{1}, \ldots, d_{n} is

$$
\text { Stuff } \exp \left(\sum_{j=0}^{2\lceil(1+p) / \sigma\rceil} \frac{1}{j!} \kappa_{j}(f(S X))+O\left(n^{-p}\right)\right)
$$

for any p.
For $\bar{d} \approx c n$, we allow the degrees to vary by the same amount as Barvinok and Hartigan did.

For $\bar{d}=O(n)$, we only require that each degree lies in $\left[c_{1} \bar{d}, c_{2} \bar{d}\right]$ for some constants $0<c_{1} \leq c_{2}$.

The answer for regular graphs

For any J,

$$
G(n, d)=\sqrt{2} \widehat{\mathrm{RG}}(n, d) \exp \left(\sum_{j=1}^{J} \frac{p_{j}(\Lambda)}{\Lambda^{j} n^{j-1}}+O\left(\Lambda^{-J-1} n^{-J}\right)\right)
$$

where $\Lambda=\lambda(1-\lambda)$ and p_{j} is a polynomial of degree j.

$$
\begin{aligned}
& p_{1}(x)=\frac{1}{4} x, \\
& p_{2}(x)=-\frac{1}{4} x^{2}, \\
& p_{3}(x)=\frac{1}{24}(2-23 x) x^{2}, \\
& p_{4}(x)=\frac{1}{24}(22-129 x) x^{3}, \\
& p_{5}(x)=-\frac{1}{12}\left(3-115 x+483 x^{2}\right) x^{3}, \\
& p_{6}(x)=-\frac{1}{60}\left(375-6615 x+22097 x^{2}\right) x^{4} .
\end{aligned}
$$

These are enough to re-prove the regular conjecture for $d \geq n^{1 / 7+\varepsilon}$.

An example of the precision for regular graphs

$$
G(n, d)=\sqrt{2} \widehat{R G}(n, d) \exp \left(\sum_{j=1}^{J} \frac{p_{j}(\Lambda)}{\Lambda^{j} n^{j-1}}+O\left(\Lambda^{-J-1} n^{-J}\right)\right)
$$

Here is how it performs for $\operatorname{RG}(26,12)$.

J	value	rel. err.
1	1.4258993×10^{77}	1.1×10^{-2}
2	1.4120471×10^{77}	1.0×10^{-3}
3	1.4107433×10^{77}	1.1×10^{-4}
4	1.4106066×10^{77}	1.6×10^{-5}
5	1.4105885×10^{77}	2.9×10^{-6}
6	1.4105853×10^{77}	6.5×10^{-7}
exact	1.4105844×10^{77}	

A new puzzle

The expansion seems to work for every d, even constant d, but we have no idea how to prove it.

Generalizing

So far we have considered all graphs with a given degree sequence.
Think of that as
"all subgraphs of the complete graph K_{n} with a given degree sequence".

Generalizing

So far we have considered all graphs with a given degree sequence.
Think of that as
"all subgraphs of the complete graph K_{n} with a given degree sequence".

Instead of K_{n}, we can take a fixed supergraph G and count its subgraphs with a given degree sequence.

Our requirements on G are that it is not too close to bipartite and that it has reasonable expansion properties. This allows us to study the probability of large subgraphs.

Generalizing

So far we have considered all graphs with a given degree sequence.
Think of that as
"all subgraphs of the complete graph K_{n} with a given degree sequence".

Instead of K_{n}, we can take a fixed supergraph G and count its subgraphs with a given degree sequence.

Our requirements on G are that it is not too close to bipartite and that it has reasonable expansion properties. This allows us to study the probability of large subgraphs.

The case where G is bipartite can also be done by similar methods, but we didn't do it yet.

