X-minors and X-spanning subgraphs

Ghent Graph Theory Workshop on Structure and Algorithms

Samuel Mohr – joint work with T. Böhme, J. Harant, M. Kriesell, J. M. Schmidt August 12th, 2019

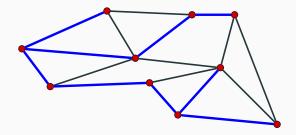
Institut für Mathematik Technische Universität Ilmenau

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 327533333

Barnette's Result (1966)

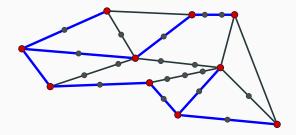
Barnette's Result (1966)

Barnette's Result (1966)



Barnette's Result (1966)

Barnette's Result (1966)



X-connectivity

Let G graph, $X \subseteq V(G)$:

X-separator:

• $S \subseteq V(G)$ is an X-separator

: \Leftrightarrow at least two components of G - S contain a vertex from X.

X-connectivity

Let G graph, $X \subseteq V(G)$:

X-separator:

• $S \subseteq V(G)$ is an X-separator

: \Leftrightarrow at least two components of G - S contain a vertex from X.

k-connected in *G*:

• $X \subseteq V(G)$ is *k*-connected in *G*

 $:\Leftrightarrow |X| \ge k + 1$ and no X-separator S with |S| < k exists.

X-connectivity

Let G graph, $X \subseteq V(G)$:

X-separator:

- $S \subseteq V(G)$ is an X-separator
 - : \Leftrightarrow at least two components of G S contain a vertex from X.

k-connected in *G*:

- $X \subseteq V(G)$ is *k*-connected in *G*
 - $|X| \ge k + 1$ and no X-separator S with |S| < k exists.

X-spanning:

■ A subgraph *H* of *G* is X-spanning : \Leftrightarrow X \subseteq V(*H*).

Samuel Mohr

Barnette's Result (1966)

Barnette's Result (1966)

Every 3-connected planar graph *G* has a spanning tree of maximum degree at most 3.

Spanning subgraph result

G graph, $X \subseteq V(G)$, X is 3-connected in G:

Is the following true?

If G is a planar graph, $X \subseteq V(G)$, X is 3-conn. in G, then G has an X-spanning tree of maximum degree at most 3.

Is the following true?

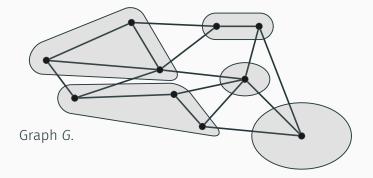
If G is a planar graph, $X \subseteq V(G)$, X is 3-conn. in G, then G has an X-spanning tree of maximum degree at most 3.

X-spanning subgraph result

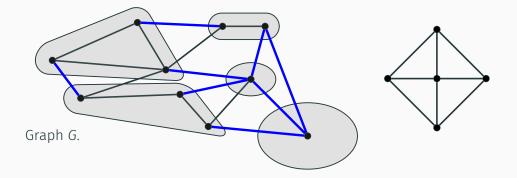
Conclusion

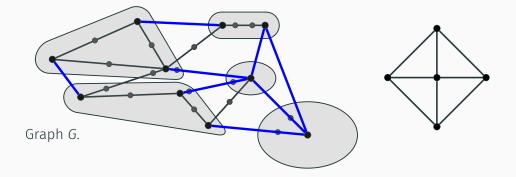
Concept?

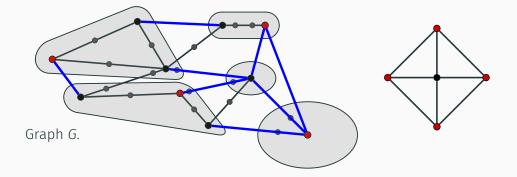
How to obtain X-spanning subgraph results?



Samuel Mohr







Well-known:

■ Partition of a subset of V(G) into bags.

- Partition of a subset of V(G) into bags.
- Bags are pairwise disjoint and connected.

- Partition of a subset of V(G) into bags.
- Bags are pairwise disjoint and connected.
- Set of bags is the vertex set V(M) of a minor M.

- Partition of a subset of V(G) into bags.
- Bags are pairwise disjoint and connected.
- Set of bags is the vertex set V(M) of a minor M.
- There is an edge of G connecting two bags if these two bags are adjacent in M.

- Partition of a subset of V(G) into bags.
- Bags are pairwise disjoint and connected.
- Set of bags is the vertex set V(M) of a minor M.
- There is an edge of G connecting two bags if these two bags are adjacent in M.

Well-known:

- Partition of a subset of V(G) into bags.
- Bags are pairwise disjoint and connected.
- Set of bags is the vertex set V(M) of a minor M.
- There is an edge of G connecting two bags if these two bags are adjacent in M.

X-Minor:

■ Each bag contains at most one vertex of *X*.

Well-known:

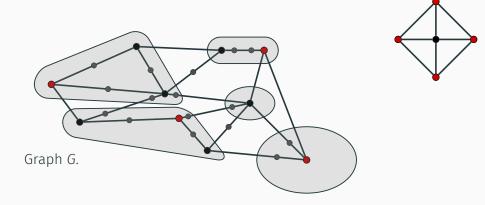
- Partition of a subset of V(G) into bags.
- Bags are pairwise disjoint and connected.
- Set of bags is the vertex set V(M) of a minor M.
- There is an edge of G connecting two bags if these two bags are adjacent in M.

X-Minor:

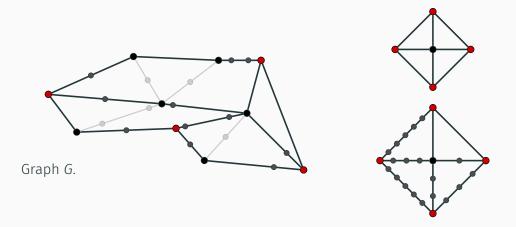
- Each bag contains at most one vertex of *X*.
- Each $x \in X$ is contained in some bag.

Topological minors

Topological minors



Topological minors



Theorem on topological X-minors

Topological *X***-Minor** *M**:

- *M** is *X*-minor.
- A subdivision of *M*^{*} is subgraph of *G* such that *X*-vertices corresponds.

Theorem on topological X-minors

Topological *X***-Minor** *M**:

- M* is X-minor.
- A subdivision of *M*^{*} is subgraph of *G* such that *X*-vertices corresponds.

Theorem (on topological X-minors)

■ If $k \in \{1, 2, 3\}$, G is a graph, and $X \subseteq V(G)$ is k-connected in G, then G has a k-connected topological X-minor.

More X-spanning results

Barnette's Result (1966)

More X-spanning results

X-spanning version of Barnette's Result

If G is a planar graph, $X \subseteq V(G)$, X is 3-connected in G, then G has an X-spanning tree of maximum degree at most 3.

More X-spanning results

X-spanning version of Barnette's Result

If G is a planar graph, $X \subseteq V(G)$, X is 3-connected in G, then G has an X-spanning tree of maximum degree at most 3.

■ G has a 3-connected topological X-minor M*.

X-spanning version of Barnette's Result

- G has a 3-connected topological X-minor M*.
- *M** is planar.

X-spanning version of Barnette's Result

- G has a 3-connected topological X-minor M*.
- *M** is planar.
- *M*^{*} has a spanning tree *T*(*M*^{*}) of maximum degree at most 3 (Barnette's Result).

X-spanning version of Barnette's Result

- G has a 3-connected topological X-minor M*.
- *M** is planar.
- M* has a spanning tree T(M*) of maximum degree at most 3 (Barnette's Result).
- G contains a subdivision of M* as subgraph; hence, G contains a subdivision T of T(M*) as subgraph.

X-spanning version of Barnette's Result

- G has a 3-connected topological X-minor M*.
- *M** is planar.
- M* has a spanning tree T(M*) of maximum degree at most 3 (Barnette's Result).
- G contains a subdivision of M* as subgraph; hence, G contains a subdivision T of T(M*) as subgraph.
- *T* is *X*-spanning tree in *G* of maximum degree at most 3.

X-spanning version of Barnette's Result

If G is a planar graph, $X \subseteq V(G)$, X is 3-connected in G, then G has an X-spanning tree of maximum degree at most 3.

Gao (1995)

Every 3-connected planar graph *G* contains a 2-connected spanning subgraph of maximum degree at most 6.

X-spanning version of Barnette's Result

If G is a planar graph, $X \subseteq V(G)$, X is 3-connected in G, then G has an X-spanning tree of maximum degree at most 3.

X-spanning version of Gao's Theorem

X-spanning version of Barnette's Result

If G is a planar graph, $X \subseteq V(G)$, X is 3-connected in G, then G has an X-spanning tree of maximum degree at most 3.

X-spanning version of Gao's Theorem

If G is a planar graph, $X \subseteq V(G)$, X is 3-connected in G, then G has a 2-connected X-spanning subgraph of maximum degree at most 6.

Ota, Ozeki (2009)

Let $t \ge 4$ be an even integer. Every 3-connected graph G without $K_{3,t}$ -minor has a spanning tree of maximum degree at most (t - 1).

X-spanning version of Barnette's Result

If G is a planar graph, $X \subseteq V(G)$, X is 3-connected in G, then G has an X-spanning tree of maximum degree at most 3.

X-spanning version of Gao's Theorem

If G is a planar graph, $X \subseteq V(G)$, X is 3-connected in G, then G has a 2-connected X-spanning subgraph of maximum degree at most 6.

X-spanning version of Ota and Ozeki

Let $t \ge 4$ be an even integer. If G is a graph without $K_{3,t}$ -minor, $X \subseteq V(G)$, X is 3-conn. in G, then G has an X-spanning tree of maximum degree at most (t - 1).

Tutte (1956)

Every 4-connected planar graph G is hamiltonian,

Tutte (1956)

Every 4-connected planar graph G is hamiltonian, i.e. G has a spanning cycle.

Tutte (1956)

Every 4-connected planar graph G is hamiltonian, i.e. G has a spanning cycle.

X-spanning version of Tutte's Theorem

If G is a planar graph, $X \subseteq V(G)$, X is highly connected in G, then G has an X-spanning cycle ???

Tutte (1956)

Every 4-connected planar graph G is hamiltonian, i.e. G has a spanning cycle.

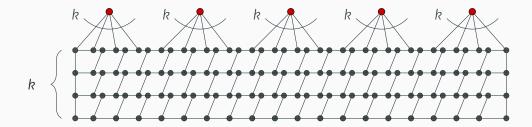
X-spanning version of Tutte's Theorem

If G is a planar graph, $X \subseteq V(G)$, X is highly connected in G, then G has an X-spanning cycle ???

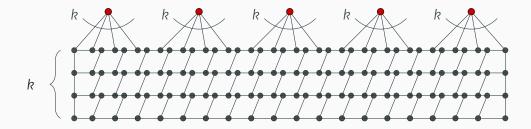
Theorem (on topological X-minors)

If k ∈ {1,2,3}, G is a graph, and X ⊆ V(G) is k-connected in G, then G has a k-connected topological X-minor.

2 ...

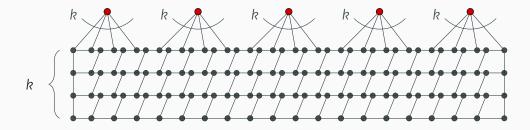


Arbitrary integer $k \ge 4$, planar graph F_k :



X is k-connected in G.

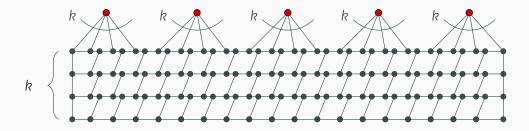
Arbitrary integer $k \ge 4$, planar graph F_k :



X is k-connected in G.

If M^* is topological X-minor, M^* 4-connected, then $\delta(M^*) \ge 4$.

Arbitrary integer $k \ge 4$, planar graph F_k :



X is k-connected in G.

- If M^* is topological X-minor, M^* 4-connected, then $\delta(M^*) \ge 4$.
- Then $V(M^*) = X!$

Samuel Mohr

Theorem on topological X-minors

Theorem 1 (on topological X-minors)

- 1 If k ∈ {1,2,3}, G is a graph, and X ⊆ V(G) is k-connected in G, then G has a k-connected topological X-minor.
- 2 For an arbitrary integer k, there are infinitely many planar graphs G and X ⊆ V(G) such that X is k-connected in G and G has no 4-connected topological X-minor.

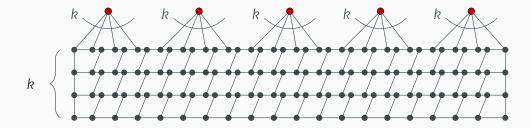
Conclusion

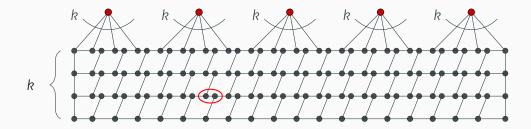
??

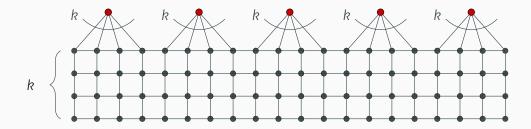
Is there a 4-connected topological X-minor?

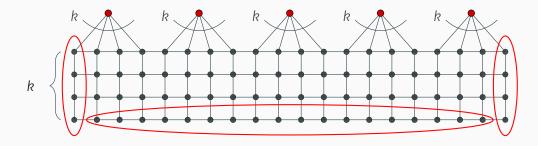
Samuel Mohr

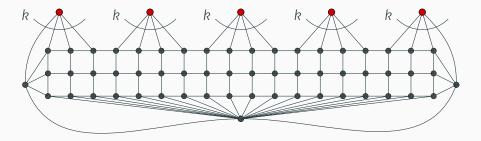
X-minors and X-spanning subgraphs









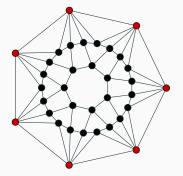


Theorem on X-minors

Theorem (on X-minors)

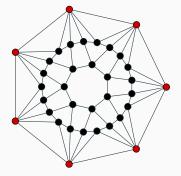
■ If $k \in \{1, 2, 3, 4\}$, G is a graph, and $X \subseteq V(G)$ is k-connected in G, then G has a k-connected X-minor.

2 ...



Conclusion

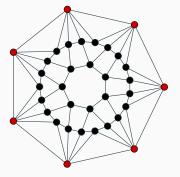
Limitations



■ X is 6-connected in G,

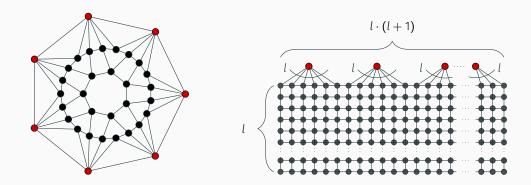
Samuel Mohr

X-minors and X-spanning subgraphs

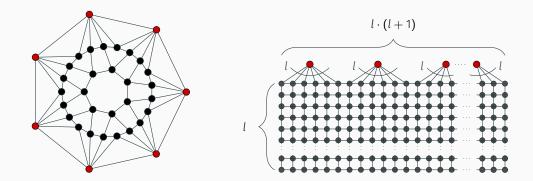


- \blacksquare X is 6-connected in G,
- there is no 5-connected X-minor.

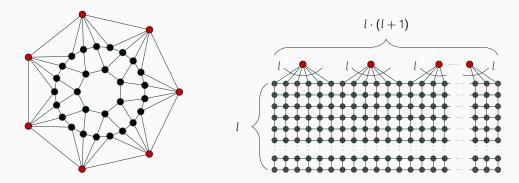
Conclusion



- *X* is 6-connected in *G*,
- there is no 5-connected X-minor.



- X is 6-connected in G,
- there is no 5-connected X-minor.
- X is *l*-connected in G,



- X is 6-connected in G,there is no 5-connected X-minor.
- X is *l*-connected in G,
- there is no 6-connected X-minor.

Theorem on X-minors

Theorem 2 (on X-minors)

- If $k \in \{1, 2, 3, 4\}$, G is a graph, and $X \subseteq V(G)$ is *k*-connected in G, then G has a *k*-connected X-minor.
- **2** There are infinitely many planar graphs G and $X \subseteq V(G)$ such that X is 6-connected in G and G has no 5-connected X-minor.
- For an arbitrary integer k, there are infinitely many planar graphs G and X ⊆ V(G) such that X is k-connected in G and G has no 6-connected X-minor.

Application

Ellingham (1996)

If G is a 4-connected graph embedded into a closed surface of Euler characteristic $\Sigma < 0$. Then there is a function $f(\cdot)$, such that G has a spanning tree of maximum degree at most $f(\Sigma)$.

Application

Ellingham (1996)

If G is a 4-connected graph embedded into a closed surface of Euler characteristic $\Sigma < 0$. Then there is a function $f(\cdot)$, such that G has a spanning tree of maximum degree at most $f(\Sigma)$.

X-spanning version of Ellingham's Theorem

If G is a graph of Euler characteristic Σ , $X \subseteq V(G)$, X is 4-connected in G, then G has an X-spanning tree of maximum degree at most $f(\Sigma) + 1$.

• $X \subseteq V(G)$ is k-connected in G.

- $X \subseteq V(G)$ is k-connected in G.
- $f : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is f(k)-connected in G, then G has k-connected topological X-minor.

- $X \subseteq V(G)$ is *k*-connected in *G*.
- $f : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is f(k)-connected in G, then G has k-connected topological X-minor.
- $g : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is g(k)-connected in G, then G has k-connected topological X-minor.

- $X \subseteq V(G)$ is *k*-connected in *G*.
- $f : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is f(k)-connected in G, then G has k-connected topological X-minor.
- $g : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is g(k)-connected in G, then G has k-connected topological X-minor.
- obvious: $k \leq g(k) \leq f(k)$

	$\kappa_{M} = \left \begin{array}{c} 1 \end{array} \right $	2	3	4	5	6	≥ 7
top. X-Minor:	$f(\cdot) =$						
X-Minor:	$g(\cdot) =$						

- $X \subseteq V(G)$ is *k*-connected in *G*.
- $f : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is f(k)-connected in G, then G has k-connected topological X-minor.
- $g : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is g(k)-connected in G, then G has k-connected topological X-minor.
- obvious: $k \leq g(k) \leq f(k)$

	$\kappa_{\rm M} =$	1	2	3	4	5	6	≥ 7
top. X-Minor:	$f(\cdot) =$	1	2	3				
X-Minor:	$g(\cdot) =$							

- $X \subseteq V(G)$ is *k*-connected in *G*.
- $f : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is f(k)-connected in G, then G has k-connected topological X-minor.
- $g : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is g(k)-connected in G, then G has k-connected topological X-minor.
- obvious: $k \leq g(k) \leq f(k)$

	$\kappa_{\rm M} =$	1	2	3	4	5	6	≥ 7
top. X-Minor:	$f(\cdot) =$	1	2	3				
X-Minor:	$g(\cdot) =$	1	2	3				

- $X \subseteq V(G)$ is *k*-connected in *G*.
- $f : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is f(k)-connected in G, then G has k-connected topological X-minor.
- $g : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is g(k)-connected in G, then G has k-connected topological X-minor.
- obvious: $k \leq g(k) \leq f(k)$

	$\kappa_{\rm M} =$	1	2	3	4	5	6	≥ 7
top. X-Minor:	$f(\cdot) =$	1	2	3	∞			
X-Minor:	$g(\cdot) =$	1	2	3				

- $X \subseteq V(G)$ is *k*-connected in *G*.
- $f : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is f(k)-connected in G, then G has k-connected topological X-minor.
- $g : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is g(k)-connected in G, then G has k-connected topological X-minor.
- obvious: $k \leq g(k) \leq f(k)$

	$\kappa_{\rm M} =$	1	2	3	4	5	6	≥ 7
top. X-Minor:	$f(\cdot) =$	1	2	3	∞	∞	∞	∞
X-Minor:	$g(\cdot) =$	1	2	3				

- $X \subseteq V(G)$ is *k*-connected in *G*.
- $f : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is f(k)-connected in G, then G has k-connected topological X-minor.
- $g : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is g(k)-connected in G, then G has k-connected topological X-minor.
- obvious: $k \leq g(k) \leq f(k)$

	$\kappa_{\rm M} =$	1	2	3	4	5	6	≥ 7
top. X-Minor:	$f(\cdot) =$	1	2	3	∞	∞	∞	∞
X-Minor:	$g(\cdot) =$	1	2	3			∞	∞

- $X \subseteq V(G)$ is *k*-connected in *G*.
- $f : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is f(k)-connected in G, then G has k-connected topological X-minor.
- $g : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is g(k)-connected in G, then G has k-connected topological X-minor.
- obvious: $k \leq g(k) \leq f(k)$

	$\kappa_{\rm M} =$	1	2	3	4	5	6	≥ 7
top. X-Minor:	$f(\cdot) =$	1	2	3	∞	∞	∞	∞
X-Minor:	$g(\cdot) =$	1	2	3	4		∞	∞

- $X \subseteq V(G)$ is *k*-connected in *G*.
- $f : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is f(k)-connected in G, then G has k-connected topological X-minor.
- $g : \mathbb{N} \to \mathbb{N}$ such that if $X \subseteq V(G)$ is g(k)-connected in G, then G has k-connected topological X-minor.
- obvious: $k \leq g(k) \leq f(k)$

	$\kappa_{\rm M} =$	1	2	3	4	5	6	≥ 7
top. X-Minor:	$f(\cdot) =$	1	2	3	∞	∞	∞	∞
X-Minor:	$g(\cdot) =$	1	2	3	4	≥ 7	∞	∞

!!

Bedankt voor uw aandacht

Samuel Mohr

X-minors and X-spanning subgraphs