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X-connectivity

Let G graph, X ⊆ V(G):

X-separator:
S ⊆ V(G) is an X-separator

:⇔ at least two components of G− S contain a vertex from X.

k-connected in G:
X ⊆ V(G) is k-connected in G

:⇔ |X| ≥ k+ 1 and no X-separator S with |S| < k exists.

X-spanning:
A subgraph H of G is X-spanning

:⇔ X ⊆ V(H).
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Spanning subgraph results

Barnette’s Result (1966)
Every 3-connected planar graph G has a spanning tree
of maximum degree at most 3.

} Spanning
subgraph result

G graph, X ⊆ V(G), X is 3-connected in G:

Is the following true?
If G is a planar graph, X ⊆ V(G), X is 3-conn. in G, then G
has an X-spanning tree of maximum degree at most 3. } X-spanning

subgraph result
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Concept?

??
How to obtain X-spanning subgraph

results?
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Minors

Graph G.
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Definition

Well-known:
Partition of a subset of V(G) into bags.

Bags are pairwise disjoint and connected.

Set of bags is the vertex set V(M) of a minor M.

There is an edge of G connecting two bags if these
two bags are adjacent in M.

X-Minor:
Each bag contains at most one vertex of X.

Each x ∈ X is contained in some bag.

}

usual
definition
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Topological minors

Graph G.
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Theorem on topological X-minors

Topological X-Minor M∗:

M∗ is X-minor.
A subdivision of M∗ is subgraph of G such that X-vertices corresponds.

Theorem (on topological X-minors)
1 If k ∈ {1, 2, 3}, G is a graph, and X ⊆ V(G) is k-connected in G, then G has a

k-connected topological X-minor.
2 …
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More X-spanning results

Barnette’s Result (1966)
Every 3-connected planar graph G has a spanning tree of maximum degree at
most 3.

Gao (1995)
Every 3-connected planar graph G contains a 2-connected spanning subgraph of
maximum degree at most 6.

Ota, Ozeki (2009)
Let t ≥ 4 be an even integer. Every 3-connected graph G without K3,t-minor has a
spanning tree of maximum degree at most (t− 1).

G has a 3-connected topological X-minor M∗.
M∗ is planar.
M∗ has a spanning tree T(M∗) of maximum degree
at most 3 (Barnette’s Result).
G contains a subdivision of M∗ as subgraph;
hence, G contains a subdivision T of T(M∗) as subgraph.
T is X-spanning tree in G of maximum degree at most 3.
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More X-spanning results

Tutte (1956)
Every 4-connected planar graph G is hamiltonian,

i. e. G has a spanning cycle.

X-spanning version of Tutte’s Theorem
If G is a planar graph, X ⊆ V(G), X is highly connected in G, then G has an
X-spanning cycle ???

Theorem (on topological X-minors)
1 If k ∈ {1, 2, 3}, G is a graph, and X ⊆ V(G) is k-connected in G, then G has a

k-connected topological X-minor.
2 …
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Problem

Arbitrary integer k ≥ 4, planar graph Fk:

k k k k k

k

X is k-connected in G.
If M∗ is topological X-minor, M∗ 4-connected, then δ(M∗) ≥ 4.
Then V(M∗) = X!
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Theorem on topological X-minors

Theorem 1 (on topological X-minors)
1 If k ∈ {1, 2, 3}, G is a graph, and X ⊆ V(G) is k-connected in G, then G has a

k-connected topological X-minor.
2 For an arbitrary integer k, there are infinitely many planar graphs G and

X ⊆ V(G) such that X is k-connected in G and G has no 4-connected
topological X-minor.
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??
Is there a 4-connected topological

X-minor?
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Problem

Arbitrary integer k ≥ 4, planar graph Fk:

k k k k k
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Theorem on X-minors

Theorem (on X-minors)
1 If k ∈ {1, 2, 3, 4}, G is a graph, and X ⊆ V(G) is k-connected in G, then G has a

k-connected X-minor.
2 …
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Limitations

X is 6-connected in G,
there is no 5-connected X-minor.

l l l l

l

l · (l+ 1)

X is l-connected in G,
there is no 6-connected X-minor.
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Theorem on X-minors

Theorem 2 (on X-minors)
1 If k ∈ {1, 2, 3, 4}, G is a graph, and X ⊆ V(G) is k-connected in G, then G has a

k-connected X-minor.
2 There are infinitely many planar graphs G and X ⊆ V(G) such that X is

6-connected in G and G has no 5-connected X-minor.
3 For an arbitrary integer k, there are infinitely many planar graphs G and

X ⊆ V(G) such that X is k-connected in G and G has no 6-connected X-minor.
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Application

Ellingham (1996)
If G is a 4-connected graph embedded into a closed surface of Euler
characteristic Σ < 0. Then there is a function f( · ), such that G has a spanning
tree of maximum degree at most f(Σ).

X-spanning version of Ellingham’s Theorem
If G is a graph of Euler characteristic Σ, X ⊆ V(G), X is 4-connected in G, then G
has an X-spanning tree of maximum degree at most f(Σ) + 1.
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Summing up!

X ⊆ V(G) is k-connected in G.

f : N → N such that if X ⊆ V(G) is f(k)-connected in G, then G has
k-connected topological X-minor.
g : N → N such that if X ⊆ V(G) is g(k)-connected in G, then G has
k-connected topological X-minor.
obvious: k ≤ g(k) ≤ f(k)

κM = 1 2 3 4 5 6 ≥ 7

top. X-Minor: f( · ) =

1 2 3 ∞ ∞ ∞ ∞

X-Minor: g( · ) =

1 2 3 4 ≥ 7 ∞ ∞
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!!
Bedankt voor uw aandacht
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