X -minors and X -spanning subgraphs

Ghent Graph Theory Workshop on Structure and Algorithms

Samuel Mohr - joint work with T. Böhme, J. Harant, M. Kriesell, J. M. Schmidt August 12 ${ }^{\text {th }}, 2019$

Institut für Mathematik
Technische Universität IImenau

Barnette's Result

Barnette's Result (1966)

Every 3-connected planar graph G has a spanning tree of maximum degree at most 3.

Barnette's Result

Barnette's Result (1966)

Every 3-connected planar graph G has a spanning tree of maximum degree at most 3.

Barnette's Result

Barnette's Result (1966)

Every 3-connected planar graph G has a spanning tree of maximum degree at most 3.

Barnette's Result

Barnette's Result (1966)

Every 3-connected planar graph G has a spanning tree of maximum degree at most 3.

Barnette's Result

Barnette's Result (1966)

Every 3-connected planar graph G has a spanning tree of maximum degree at most 3.

X-connectivity

Let G graph, $X \subseteq V(G)$:
X-separator:
■ $S \subseteq V(G)$ is an X-separator
$: \Leftrightarrow$ at least two components of $G-S$ contain a vertex from X.

X-connectivity

Let G graph, $X \subseteq V(G)$:
X-separator:
■ $S \subseteq V(G)$ is an X-separator
$: \Leftrightarrow$ at least two components of $G-S$ contain a vertex from X.
k-connected in G :
■ $X \subseteq V(G)$ is k-connected in G
$: \Leftrightarrow|X| \geq k+1$ and no X-separator S with $|S|<k$ exists.

X-connectivity

Let G graph, $X \subseteq V(G)$:
X-separator:
■ $S \subseteq V(G)$ is an X-separator
$: \Leftrightarrow$ at least two components of $G-S$ contain a vertex from X.

k-connected in G :

■ $X \subseteq V(G)$ is k-connected in G
$: \Leftrightarrow|X| \geq k+1$ and no X-separator S with $|S|<k$ exists.

X-spanning:

- A subgraph H of G is X-spanning

$$
: \Leftrightarrow X \subseteq V(H) .
$$

Spanning subgraph results

Barnette's Result (1966)

Every 3-connected planar graph G has a spanning tree of maximum degree at most 3.

Spanning subgraph results

Barnette's Result (1966)

Every 3-connected planar graph G has a spanning tree of maximum degree at most 3.

Spanning subgraph results

Barnette's Result (1966)

Every 3 -connected planar graph G has a spanning tree of maximum degree at most 3 .

\}
Spanning
subgraph result
G graph, $X \subseteq V(G), X$ is 3 -connected in G :
Is the following true?
If G is a planar graph, $X \subseteq V(G), X$ is 3 -conn. in G, then G has an X-spanning tree of maximum degree at most 3 .

Spanning subgraph results

Barnette's Result (1966)

Every 3-connected planar graph G has a spanning tree of maximum degree at most 3 .

\}
Spanning subgraph result
G graph, $X \subseteq V(G), X$ is 3 -connected in G :

Is the following true?

If G is a planar graph, $X \subseteq V(G), X$ is 3 -conn. in G, then G has an X-spanning tree of maximum degree at most 3 .

\}
X-spanning subgraph result

Concept?

??

How to obtain X-spanning subgraph results?

Minors

Definition

Well-known:

■ Partition of a subset of $V(G)$ into bags.

Definition

Well-known:

- Partition of a subset of $V(G)$ into bags.

■ Bags are pairwise disjoint and connected.

Definition

Well-known:

■ Partition of a subset of $V(G)$ into bags.
■ Bags are pairwise disjoint and connected.
■ Set of bags is the vertex set $V(M)$ of a minor M.

Definition

Well-known:

■ Partition of a subset of $V(G)$ into bags.
■ Bags are pairwise disjoint and connected.
■ Set of bags is the vertex set $V(M)$ of a minor M.
■ There is an edge of G connecting two bags if these two bags are adjacent in M.

Definition

Well-known:

■ Partition of a subset of $V(G)$ into bags.
■ Bags are pairwise disjoint and connected.
■ Set of bags is the vertex set $V(M)$ of a minor M.
■ There is an edge of G connecting two bags if these two bags are adjacent in M.

Definition

Well-known:

■ Partition of a subset of $V(G)$ into bags.
■ Bags are pairwise disjoint and connected.

- Set of bags is the vertex set $V(M)$ of a minor M.

■ There is an edge of G connecting two bags if these $\left\{\begin{array}{l}\text { usual } \\ \text { definition }\end{array}\right.$ two bags are adjacent in M.

X-Minor:

■ Each bag contains at most one vertex of X.

Definition

Well-known:

■ Partition of a subset of $V(G)$ into bags.
■ Bags are pairwise disjoint and connected.

- Set of bags is the vertex set $V(M)$ of a minor M.

■ There is an edge of G connecting two bags if these $\left\{\begin{array}{l}\text { usual } \\ \text { definition }\end{array}\right.$ two bags are adjacent in M.

X-Minor:

■ Each bag contains at most one vertex of X.

- Each $x \in X$ is contained in some bag.

Topological minors

Topological minors

Topological minors

Theorem on topological X-minors

Topological X-Minor M^{*} :

- M^{*} is X-minor.

■ A subdivision of M^{*} is subgraph of G such that X-vertices corresponds.

Theorem on topological X-minors

Topological X-Minor M^{*} :

- M^{*} is X-minor.

■ A subdivision of M^{*} is subgraph of G such that X-vertices corresponds.

Theorem (on topological X-minors)
1 If $k \in\{1,2,3\}, G$ is a graph, and $X \subseteq V(G)$ is k-connected in G, then G has a k-connected topological X-minor.
2

More X-spanning results

Barnette's Result (1966)

Every 3-connected planar graph G has a spanning tree of maximum degree at most 3.

More X-spanning results

X-spanning version of Barnette's Result
If G is a planar graph, $X \subseteq V(G), X$ is 3 -connected in G, then G has an X-spanning tree of maximum degree at most 3.

More X-spanning results

X-spanning version of Barnette's Result
If G is a planar graph, $X \subseteq V(G), X$ is 3 -connected in G, then G has an X-spanning tree of maximum degree at most 3.

■ G has a 3-connected topological X-minor M^{*}.

More X-spanning results

X-spanning version of Barnette's Result
If G is a planar graph, $X \subseteq V(G), X$ is 3 -connected in G, then G has an X-spanning tree of maximum degree at most 3.

- G has a 3-connected topological X-minor M^{*}.
- M^{*} is planar.

More X-spanning results

X-spanning version of Barnette's Result

If G is a planar graph, $X \subseteq V(G), X$ is 3 -connected in G, then G has an X-spanning tree of maximum degree at most 3.

■ G has a 3-connected topological X-minor M^{*}.

- M^{*} is planar.
- M^{*} has a spanning tree $T\left(M^{*}\right)$ of maximum degree at most 3 (Barnette's Result).

More X-spanning results

X-spanning version of Barnette's Result

If G is a planar graph, $X \subseteq V(G), X$ is 3 -connected in G, then G has an X-spanning tree of maximum degree at most 3.

- G has a 3-connected topological X-minor M^{*}.
- M^{*} is planar.
- M^{*} has a spanning tree $T\left(M^{*}\right)$ of maximum degree at most 3 (Barnette's Result).
■ G contains a subdivision of M^{*} as subgraph; hence, G contains a subdivision T of $T\left(M^{*}\right)$ as subgraph.

More X-spanning results

X-spanning version of Barnette's Result

If G is a planar graph, $X \subseteq V(G), X$ is 3 -connected in G, then G has an X-spanning tree of maximum degree at most 3.

■ G has a 3-connected topological X-minor M^{*}.

- M^{*} is planar.
- M^{*} has a spanning tree $T\left(M^{*}\right)$ of maximum degree at most 3 (Barnette's Result).

■ G contains a subdivision of M^{*} as subgraph; hence, G contains a subdivision T of $T\left(M^{*}\right)$ as subgraph.

■ T is X-spanning tree in G of maximum degree at most 3 .

More X-spanning results

X-spanning version of Barnette's Result
If G is a planar graph, $X \subseteq V(G), X$ is 3 -connected in G, then G has an X-spanning tree of maximum degree at most 3.

Gao (1995)

Every 3-connected planar graph G contains a 2-connected spanning subgraph of maximum degree at most 6 .

More X-spanning results

X-spanning version of Barnette's Result
If G is a planar graph, $X \subseteq V(G), X$ is 3 -connected in G, then G has an X-spanning tree of maximum degree at most 3.

X-spanning version of Gao's Theorem

If G is a planar graph, $X \subseteq V(G), X$ is 3-connected in G, then G has a 2-connected X-spanning subgraph of maximum degree at most 6 .

More X-spanning results

X-spanning version of Barnette's Result

If G is a planar graph, $X \subseteq V(G), X$ is 3 -connected in G, then G has an X-spanning tree of maximum degree at most 3.

X-spanning version of Gao's Theorem

If G is a planar graph, $X \subseteq V(G), X$ is 3-connected in G, then G has a 2-connected X-spanning subgraph of maximum degree at most 6 .

Ota, Ozeki (2009)

Let $t \geq 4$ be an even integer. Every 3 -connected graph G without $K_{3, t}-$ minor has a spanning tree of maximum degree at most $(t-1)$.

More X-spanning results

X-spanning version of Barnette's Result

If G is a planar graph, $X \subseteq V(G), X$ is 3 -connected in G, then G has an X-spanning tree of maximum degree at most 3.

X-spanning version of Gao's Theorem

If G is a planar graph, $X \subseteq V(G), X$ is 3-connected in G, then G has a 2-connected X-spanning subgraph of maximum degree at most 6 .

X-spanning version of Ota and Ozeki

Let $t \geq 4$ be an even integer. If G is a graph without $K_{3, t^{-}}$minor, $X \subseteq V(G), X$ is 3-conn. in G, then G has an X-spanning tree of maximum degree at most $(t-1)$.

More X-spanning results

Tutte (1956)

Every 4-connected planar graph G is hamiltonian,

More X-spanning results

Tutte (1956)

Every 4-connected planar graph G is hamiltonian, i.e. G has a spanning cycle.

More X-spanning results

Tutte (1956)

Every 4-connected planar graph G is hamiltonian, i.e. G has a spanning cycle.

X-spanning version of Tutte's Theorem

If G is a planar graph, $X \subseteq V(G), X$ is highly connected in G, then G has an X-spanning cycle ???

More X-spanning results

Tutte (1956)

Every 4 -connected planar graph G is hamiltonian, i. e. G has a spanning cycle.

X-spanning version of Tutte's Theorem

If G is a planar graph, $X \subseteq V(G), X$ is highly connected in G, then G has an X-spanning cycle ???

Theorem (on topological X-minors)
1 If $k \in\{1,2,3\}, G$ is a graph, and $X \subseteq V(G)$ is k-connected in G, then G has a k-connected topological X-minor.

2

Problem

Arbitrary integer $k \geq 4$, planar graph F_{k} :

Problem

Arbitrary integer $k \geq 4$, planar graph F_{k} :

■ X is k-connected in G.

Problem

Arbitrary integer $k \geq 4$, planar graph F_{k} :

■ X is k-connected in G.

- If M^{*} is topological X-minor, M^{*} 4-connected, then $\delta\left(M^{*}\right) \geq 4$.

Problem

Arbitrary integer $k \geq 4$, planar graph F_{k} :

■ X is k-connected in G.
■ If M^{*} is topological X-minor, M^{*} 4-connected, then $\delta\left(M^{*}\right) \geq 4$.

- Then $V\left(M^{*}\right)=X$!

Theorem on topological X-minors

Theorem 1 (on topological X-minors)

1 If $k \in\{1,2,3\}$, G is a graph, and $X \subseteq V(G)$ is k-connected in G, then G has a k-connected topological X-minor.
2 For an arbitrary integer k, there are infinitely many planar graphs G and $X \subseteq V(G)$ such that X is k-connected in G and G has no 4 -connected topological X-minor.

??

Is there a 4 -connected topologicat x-minor?

Problem

Arbitrary integer $k \geq 4$, planar graph F_{k} :

Problem

Arbitrary integer $k \geq 4$, planar graph F_{k} :

Problem

Arbitrary integer $k \geq 4$, planar graph F_{k} :

Problem

Arbitrary integer $k \geq 4$, planar graph F_{k} :

Problem

Arbitrary integer $k \geq 4$, planar graph F_{k} :

Theorem on X-minors

Theorem (on X-minors)
1 If $k \in\{1,2,3,4\}$, G is a graph, and $X \subseteq V(G)$ is k-connected in G, then G has a k-connected X-minor.

2

Limitations

Limitations

■ X is 6 -connected in G,

Limitations

■ X is 6 -connected in G,
■ there is no 5 -connected X-minor.

Limitations

■ X is 6 -connected in G,
■ there is no 5 -connected X-minor.

Limitations

■ X is 6 -connected in G,
■ there is no 5 -connected X-minor.

■ X is l-connected in G,

Limitations

■ X is 6 -connected in G,
■ there is no 5 -connected X-minor.

■ X is l-connected in G,
■ there is no 6 -connected X-minor.

Theorem on X-minors

Theorem 2 (on X-minors)

1 If $k \in\{1,2,3,4\}$, G is a graph, and $X \subseteq V(G)$ is k-connected in G, then G has a k-connected X-minor.

2 There are infinitely many planar graphs G and $X \subseteq V(G)$ such that X is 6 -connected in G and G has no 5-connected X-minor.
3 For an arbitrary integer k, there are infinitely many planar graphs G and $X \subseteq V(G)$ such that X is k-connected in G and G has no 6 -connected X-minor.

Application

Ellingham (1996)

If G is a 4 -connected graph embedded into a closed surface of Euler characteristic $\Sigma<0$. Then there is a function $f(\cdot)$, such that G has a spanning tree of maximum degree at most $f(\Sigma)$.

Application

Ellingham (1996)

If G is a 4-connected graph embedded into a closed surface of Euler characteristic $\Sigma<0$. Then there is a function $f(\cdot)$, such that G has a spanning tree of maximum degree at most $f(\Sigma)$.

X-spanning version of Ellingham's Theorem

If G is a graph of Euler characteristic $\Sigma, X \subseteq V(G), X$ is 4 -connected in G, then G has an X-spanning tree of maximum degree at most $f(\Sigma)+1$.

Summing up!

- $X \subseteq V(G)$ is k-connected in G.

Summing up!

- $X \subseteq V(G)$ is k-connected in G.

■ $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $f(k)$-connected in G, then G has k-connected topological X-minor.

Summing up!

- $X \subseteq V(G)$ is k-connected in G.

■ $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $f(k)$-connected in G, then G has k-connected topological X-minor.

- $g: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $g(k)$-connected in G, then G has k-connected topologicat X-minor.

Summing up!

■ $X \subseteq V(G)$ is k-connected in G.
■ $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $f(k)$-connected in G, then G has k-connected topological X-minor.
■ $g: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $g(k)$-connected in G, then G has k-connected topologicat X-minor.

■ obvious: $k \leq g(k) \leq f(k)$

	κ_{M}	$=$	1	2	3	4	5	6
top. X-Minor:	$f(\cdot)=$							
X-Minor:	$g(\cdot)=$							

Summing up!

■ $X \subseteq V(G)$ is k-connected in G.
■ $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $f(k)$-connected in G, then G has k-connected topological X-minor.
■ $g: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $g(k)$-connected in G, then G has k-connected topologicat X-minor.

■ obvious: $k \leq g(k) \leq f(k)$

	$\kappa_{M}=$	1	2	3	4	5	6	≥ 7
top. X-Minor:	$f(\cdot)=$	1	2	3				
X-Minor:	$g(\cdot)=$							

Summing up!

■ $X \subseteq V(G)$ is k-connected in G.
■ $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $f(k)$-connected in G, then G has k-connected topological X-minor.
■ $g: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $g(k)$-connected in G, then G has k-connected topologicat X-minor.
■ obvious: $k \leq g(k) \leq f(k)$

	$\kappa_{M}=$	1	2	3	4	5	6	≥ 7
top. X-Minor:	$f(\cdot)=\|$1 2 3 2 3							
X-Minor:	$g(\cdot)=$	2						

Summing up!

■ $X \subseteq V(G)$ is k-connected in G.
■ $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $f(k)$-connected in G, then G has k-connected topological X-minor.
■ $g: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $g(k)$-connected in G, then G has k-connected topologicat X-minor.
■ obvious: $k \leq g(k) \leq f(k)$

	$\kappa_{M}=$	1	2	3	4	5	6	≥ 7
top. X-Minor:	$f(\cdot)=\|$1 2 3 ∞ X-Minor: $g(\cdot)=$ 1 2 3 							

Summing up!

■ $X \subseteq V(G)$ is k-connected in G.
■ $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $f(k)$-connected in G, then G has k-connected topological X-minor.
■ $g: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $g(k)$-connected in G, then G has k-connected topologicat X-minor.
■ obvious: $k \leq g(k) \leq f(k)$

	$\kappa_{M}=$	1	2	3	4	5	6	≥ 7
top. X-Minor:	$f(\cdot)=\|$1 2 3 ∞ ∞ ∞ ∞ X-Minor: $g(\cdot)=$ 1 2 3 							

Summing up!

■ $X \subseteq V(G)$ is k-connected in G.
■ $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $f(k)$-connected in G, then G has k-connected topological X-minor.
■ $g: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $g(k)$-connected in G, then G has k-connected topologicat X-minor.
■ obvious: $k \leq g(k) \leq f(k)$

	$\kappa_{M}=$	1	2	3	4	5	6	≥ 7
top. X-Minor:	$f(\cdot)=\|$1 2 3 ∞ ∞ ∞ ∞ X-Minor: $g(\cdot)=$ 2 3 ∞							

Summing up!

■ $X \subseteq V(G)$ is k-connected in G.
■ $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $f(k)$-connected in G, then G has k-connected topological X-minor.
■ $g: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $g(k)$-connected in G, then G has k-connected topologicat X-minor.
■ obvious: $k \leq g(k) \leq f(k)$

	$\kappa_{M}=$	1	2	3	4	5	6	≥ 7
top. X-Minor:	$f(\cdot)=\|$1 2 3 ∞ ∞ ∞ ∞ X-Minor: $g(\cdot)=$ 1 2 3 4 ∞ ∞							

Summing up!

■ $X \subseteq V(G)$ is k-connected in G.
■ $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $f(k)$-connected in G, then G has k-connected topological X-minor.
■ $g: \mathbb{N} \rightarrow \mathbb{N}$ such that if $X \subseteq V(G)$ is $g(k)$-connected in G, then G has k-connected topologicat X-minor.
■ obvious: $k \leq g(k) \leq f(k)$

	$\kappa_{M}=\mid$	1	2	3	4	5	6	≥ 7
top. X-Minor:	$f(\cdot)=\|$1 2 3 ∞ ∞ ∞ ∞ X-Minor: $g(\cdot)=\mid$ 2 3 4 ≥ 7 ∞							

!!

Bedankt voor uw aandacht

