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Introduction

circumference

circ(G ) is the length of a longest cycle of G

trivial separator

A 3-separator S of a 3-connected planar graph G is trivial
if one of two components of G − S is a single vertex.

essential connectivity

A 3-connected planar graph G is essentially 4-connected
if every 3-separator of G is trivial.
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Lower bounds on circ for planar graphs

Let G be a planar graph and let n = |V (G )|.

2-connected planar graphs

circ(K2,n−2) = 4

4-connected planar graphs

Every 4-connected planar graph G is hamiltonian [Tutte, 1956], i.e.

circ(G ) = n.

3-connected planar graphs

For every 3-connected planar graph G ,

circ(G ) ≥ cnlog3 2, for some c ≥ 1 [Chen, Yu, 2002]
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Sharpness of a lower bound on circ

There is an infinite family of essentially 4-connected planar graphs
(even triangulations) with circ(G ) = 2

3(n + 4).

construction

G ∗ is a 4-connected plane triangulation on n∗ vertices

a, b ∈ E (G ∗) adjacent edges, incident with no common face

C ∗ is a hamiltonian cycle of G ∗ containing a, b

G ∗ has 2n∗ − 4 (triangular) faces

G is the Kleetope of G ∗

G is an essentially 4-connected planar triangulation

G has n = n∗ + (2n∗ − 4) = 3n∗ − 4 vertices

circ(G ) = 2n∗ = 2
3(n + 4)
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Results

Theorem (F., Harant, Mohr, Schmidt, 2019+)

For every essentially 4-connected planar graph G
on n vertices,

circ(G ) ≥ 5
8(n + 2).

Theorem (F., Harant, Mohr, Schmidt, 2019+)

For every essentially 4-connected planar triangulation G
on n vertices,

circ(G ) ≥ 2
3(n + 4).

Moreover, this bound is tight.
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Proof: Tutte cycle

Let G be an essentially 4-connected plane graph
and let C be a cycle of G of length at least 5.

Tutte cycle

A cycle C of G is a Tutte cycle
if V (G ) \ V (C ) is an independent set of vertices of degree 3.

more Tutte cycles

Every cycle C ′ of G with V (C ) ⊆ V (C ′) is a Tutte cycle as well.

extendable edge

An edge xy ∈ E (C ) is extendable
if there is a common neighbour z 6∈ V (C ) of x and y .
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Proof: a sketch

Let G be an essentially 4-connected plane triangulation
on n vertices.

for 4 ≤ n ≤ 10, G is hamiltonian

let n ≥ 11

G contains a Tutte cycle of length at least 5

let C be a longest Tutte cycle of G

C has no extendable edge
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Proof: Tutte cycle with chords

let H = G [V (C )]

H is a plane triangulation and C is a hamiltonian cycle of H



Proof: empty faces

non-empty

non-empty

a face of H is empty if it is also a face of G

F0 is the set of all empty faces of H; f0 = |F0|



Proof: j-faces

a j -face of H is incident with exactly j edges of E (C )

each 2-face and each 1-face of H is empty



Proof: number of empty faces

Fact

|V (C )| ≤ f0

2n − 4 = |F (G )| = f0 + 3(n − |V (C )|)
3|V (C )| = n + 4 + f0 ≥ n + 4 + |V (C )|
2|V (C )| ≥ n + 4

|V (C )| ≥ 1
2(n + 4)

Claim

3|V (C )| ≤ 2f0

3|V (C )| = n + 4 + f0 ≥ n + 4 + 3
2 |V (C )|

3
2 |V (C )| ≥ n + 4

|V (C )| ≥ 2
3(n + 4)
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Proof: empty faces

Lemma

Let [w , x , y , z ] be a subpath of C , let α = [x , y , z ] be a 2-face
of H1 and let β 6= α be the face of H incident with xz.
If ϕ = [w , x , y ] a 2-face of H2 then β is an empty face.

w x y z

α

β

ϕ

empty face
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Thank you.


