Circumference
 of essentially 4-connected planar graphs

Igor Fabrici

P.J. Šafárik University, Košice, Slovakia

joint work with

Jochen Harant, Samuel Mohr, Jens M. Schmidt
Technische Universität, Ilmenau, Germany

$$
\begin{aligned}
& \text { GGTW } \\
& 2 * 19
\end{aligned}
$$

Ghent, August 12, 2019

Introduction

circumference

- $\operatorname{circ}(G)$ is the length of a longest cycle of G

Introduction

circumference

- $\operatorname{circ}(G)$ is the length of a longest cycle of G

trivial separator

- A 3-separator S of a 3-connected planar graph G is trivial if one of two components of $G-S$ is a single vertex.

Introduction

circumference

- $\operatorname{circ}(G)$ is the length of a longest cycle of G

trivial separator

- A 3-separator S of a 3-connected planar graph G is trivial if one of two components of $G-S$ is a single vertex.

essential connectivity

- A 3-connected planar graph G is essentially 4-connected if every 3 -separator of G is trivial.

Lower bounds on circ for planar graphs

Let G be a planar graph and let $n=|V(G)|$.

Lower bounds on circ for planar graphs

Let G be a planar graph and let $n=|V(G)|$.
2-connected planar graphs

- $\operatorname{circ}\left(K_{2, n-2}\right)=4$

Lower bounds on circ for planar graphs

Let G be a planar graph and let $n=|V(G)|$.

2-connected planar graphs

- $\operatorname{circ}\left(K_{2, n-2}\right)=4$

4-connected planar graphs

Every 4-connected planar graph G is hamiltonian [Tutte, 1956], i.e.

- $\operatorname{circ}(G)=n$.

Lower bounds on circ for planar graphs

Let G be a planar graph and let $n=|V(G)|$.

2-connected planar graphs

- $\operatorname{circ}\left(K_{2, n-2}\right)=4$

4-connected planar graphs

Every 4-connected planar graph G is hamiltonian [Tutte, 1956], i.e.

- $\operatorname{circ}(G)=n$.

3-connected planar graphs

For every 3-connected planar graph G,

- $\operatorname{circ}(G) \geq c n^{\log _{3} 2}$, for some $c \geq 1$ [Chen, Yu, 2002]

Lower bounds on circ for planar graphs

Let G be a planar graph and let $n=|V(G)|$.

Lower bounds on circ for planar graphs

Let G be a planar graph and let $n=|V(G)|$.

essentially 4-connected planar graphs

For every essentially 4-connected planar graph G,

- $\operatorname{circ}(G) \geq \frac{2}{5}(n+2)$ [Jackson, Wormald, 1992]

Lower bounds on circ for planar graphs

Let G be a planar graph and let $n=|V(G)|$.
essentially 4-connected planar graphs
For every essentially 4-connected planar graph G,

- $\operatorname{circ}(G) \geq \frac{2}{5}(n+2)$ [Jackson, Wormald, 1992]
essentially 4-connected planar triangulations
For every essentially 4-connected planar triangulation G,
- $\operatorname{circ}(G) \geq \frac{13}{21}(n+4)$ [F., Harant, Jendrol', 2016]

Sharpness of a lower bound on circ

There is an infinite family of essentially 4-connected planar graphs (even triangulations) with $\operatorname{circ}(G)=\frac{2}{3}(n+4)$.

Sharpness of a lower bound on circ

There is an infinite family of essentially 4-connected planar graphs (even triangulations) with $\operatorname{circ}(G)=\frac{2}{3}(n+4)$.

construction

Sharpness of a lower bound on circ

There is an infinite family of essentially 4-connected planar graphs (even triangulations) with $\operatorname{circ}(G)=\frac{2}{3}(n+4)$.

construction

- G^{*} is a 4-connected plane triangulation on n^{*} vertices

Sharpness of a lower bound on circ

There is an infinite family of essentially 4-connected planar graphs (even triangulations) with $\operatorname{circ}(G)=\frac{2}{3}(n+4)$.

construction

- G^{*} is a 4-connected plane triangulation on n^{*} vertices
- $a, b \in E\left(G^{*}\right)$ adjacent edges, incident with no common face

Sharpness of a lower bound on circ

There is an infinite family of essentially 4-connected planar graphs (even triangulations) with $\operatorname{circ}(G)=\frac{2}{3}(n+4)$.

construction

- G^{*} is a 4-connected plane triangulation on n^{*} vertices
- $a, b \in E\left(G^{*}\right)$ adjacent edges, incident with no common face
- C^{*} is a hamiltonian cycle of G^{*} containing a, b

Sharpness of a lower bound on circ

There is an infinite family of essentially 4-connected planar graphs (even triangulations) with $\operatorname{circ}(G)=\frac{2}{3}(n+4)$.

construction

- G^{*} is a 4-connected plane triangulation on n^{*} vertices
- a, $b \in E\left(G^{*}\right)$ adjacent edges, incident with no common face
- C^{*} is a hamiltonian cycle of G^{*} containing a, b
- G^{*} has $2 n^{*}-4$ (triangular) faces

Sharpness of a lower bound on circ

There is an infinite family of essentially 4-connected planar graphs (even triangulations) with $\operatorname{circ}(G)=\frac{2}{3}(n+4)$.

construction

- G^{*} is a 4-connected plane triangulation on n^{*} vertices
- $a, b \in E\left(G^{*}\right)$ adjacent edges, incident with no common face
- C^{*} is a hamiltonian cycle of G^{*} containing a, b
- G^{*} has $2 n^{*}-4$ (triangular) faces
- G is the Kleetope of G^{*}

Sharpness of a lower bound on circ

There is an infinite family of essentially 4-connected planar graphs (even triangulations) with $\operatorname{circ}(G)=\frac{2}{3}(n+4)$.

construction

- G^{*} is a 4-connected plane triangulation on n^{*} vertices
- $a, b \in E\left(G^{*}\right)$ adjacent edges, incident with no common face
- C^{*} is a hamiltonian cycle of G^{*} containing a, b
- G^{*} has $2 n^{*}-4$ (triangular) faces
- G is the Kleetope of G^{*}
- G is an essentially 4 -connected planar triangulation

Sharpness of a lower bound on circ

There is an infinite family of essentially 4-connected planar graphs (even triangulations) with $\operatorname{circ}(G)=\frac{2}{3}(n+4)$.

construction

- G^{*} is a 4-connected plane triangulation on n^{*} vertices
- $a, b \in E\left(G^{*}\right)$ adjacent edges, incident with no common face
- C^{*} is a hamiltonian cycle of G^{*} containing a, b
- G^{*} has $2 n^{*}-4$ (triangular) faces
- G is the Kleetope of G^{*}
- G is an essentially 4 -connected planar triangulation
- G has $n=n^{*}+\left(2 n^{*}-4\right)=3 n^{*}-4$ vertices

Sharpness of a lower bound on circ

There is an infinite family of essentially 4-connected planar graphs (even triangulations) with $\operatorname{circ}(G)=\frac{2}{3}(n+4)$.

construction

- G^{*} is a 4-connected plane triangulation on n^{*} vertices
- $a, b \in E\left(G^{*}\right)$ adjacent edges, incident with no common face
- C^{*} is a hamiltonian cycle of G^{*} containing a, b
- G^{*} has $2 n^{*}-4$ (triangular) faces
- G is the Kleetope of G^{*}
- G is an essentially 4 -connected planar triangulation
- G has $n=n^{*}+\left(2 n^{*}-4\right)=3 n^{*}-4$ vertices
- $\operatorname{circ}(G)=2 n^{*}=\frac{2}{3}(n+4)$

Construction

Results

Theorem (F., Harant, Mohr, Schmidt, 2019+)
For every essentially 4-connected planar graph G on n vertices,

- $\operatorname{circ}(G) \geq \frac{5}{8}(n+2)$.

Results

Theorem (F., Harant, Mohr, Schmidt, 2019+)

For every essentially 4-connected planar graph G on n vertices,

- $\operatorname{circ}(G) \geq \frac{5}{8}(n+2)$.

Theorem (F., Harant, Mohr, Schmidt, 2019+)
For every essentially 4-connected planar triangulation G on n vertices,

- $\operatorname{circ}(G) \geq \frac{2}{3}(n+4)$.

Moreover, this bound is tight.

Proof: Tutte cycle

Let G be an essentially 4-connected plane graph and let C be a cycle of G of length at least 5 .

Tutte cycle

- A cycle C of G is a Tutte cycle if $V(G) \backslash V(C)$ is an independent set of vertices of degree 3 .

Proof: Tutte cycle

Let G be an essentially 4-connected plane graph and let C be a cycle of G of length at least 5 .

Tutte cycle

- A cycle C of G is a Tutte cycle if $V(G) \backslash V(C)$ is an independent set of vertices of degree 3 .

more Tutte cycles

Every cycle C^{\prime} of G with $V(C) \subseteq V\left(C^{\prime}\right)$ is a Tutte cycle as well.

Proof: Tutte cycle

Let G be an essentially 4-connected plane graph and let C be a cycle of G of length at least 5 .

Tutte cycle

- A cycle C of G is a Tutte cycle if $V(G) \backslash V(C)$ is an independent set of vertices of degree 3 .

more Tutte cycles

Every cycle C^{\prime} of G with $V(C) \subseteq V\left(C^{\prime}\right)$ is a Tutte cycle as well.

extendable edge

An edge $x y \in E(C)$ is extendable if there is a common neighbour $z \notin V(C)$ of x and y.

Proof: a sketch

Let G be an essentially 4-connected plane triangulation on n vertices.

- for $4 \leq n \leq 10, G$ is hamiltonian

Proof: a sketch

Let G be an essentially 4-connected plane triangulation on n vertices.

- for $4 \leq n \leq 10, G$ is hamiltonian
- let $n \geq 11$

Proof: a sketch

Let G be an essentially 4-connected plane triangulation on n vertices.

- for $4 \leq n \leq 10, G$ is hamiltonian
- let $n \geq 11$
- G contains a Tutte cycle of length at least 5

Proof: a sketch

Let G be an essentially 4-connected plane triangulation on n vertices.

- for $4 \leq n \leq 10, G$ is hamiltonian
- let $n \geq 11$
- G contains a Tutte cycle of length at least 5
- let C be a longest Tutte cycle of G

Proof: a sketch

Let G be an essentially 4-connected plane triangulation on n vertices.

- for $4 \leq n \leq 10, G$ is hamiltonian
- let $n \geq 11$
- G contains a Tutte cycle of length at least 5
- let C be a longest Tutte cycle of G
- C has no extendable edge

Proof: Tutte cycle with chords

- let $H=G[V(C)]$
- H is a plane triangulation and C is a hamiltonian cycle of H

Proof: empty faces

- a face of H is empty if it is also a face of G
- F_{0} is the set of all empty faces of $H ; f_{0}=\left|F_{0}\right|$

Proof: j-faces

- a j-face of H is incident with exactly j edges of $E(C)$
- each 2-face and each 1-face of H is empty

Proof: number of empty faces

Fact
 $|V(C)| \leq f_{0}$

Proof: number of empty faces

Fact
 $|V(C)| \leq f_{0}$

Proof: number of empty faces

Fact

$|V(C)| \leq f_{0}$

- $2 n-4=|F(G)|=f_{0}+3(n-|V(C)|)$

Proof: number of empty faces

Fact

$|V(C)| \leq f_{0}$

- $2 n-4=|F(G)|=f_{0}+3(n-|V(C)|)$
- $3|V(C)|=n+4+f_{0} \geq n+4+|V(C)|$

Proof: number of empty faces

Fact

$$
|V(C)| \leq f_{0}
$$

- $2 n-4=|F(G)|=f_{0}+3(n-|V(C)|)$
- $3|V(C)|=n+4+f_{0} \geq n+4+|V(C)|$
- $2|V(C)| \geq n+4$

Proof: number of empty faces

Fact

$$
|V(C)| \leq f_{0}
$$

- $2 n-4=|F(G)|=f_{0}+3(n-|V(C)|)$
- $3|V(C)|=n+4+f_{0} \geq n+4+|V(C)|$
- $2|V(C)| \geq n+4$
- $|V(C)| \geq \frac{1}{2}(n+4)$

Proof: number of empty faces

Fact

$|V(C)| \leq f_{0}$

- $2 n-4=|F(G)|=f_{0}+3(n-|V(C)|)$
- $3|V(C)|=n+4+f_{0} \geq n+4+|V(C)|$
- $2|V(C)| \geq n+4$
- $|V(C)| \geq \frac{1}{2}(n+4)$

Claim
$3|V(C)| \leq 2 f_{0}$

Proof: number of empty faces

Fact
$|V(C)| \leq f_{0}$

- $2 n-4=|F(G)|=f_{0}+3(n-|V(C)|)$
- $3|V(C)|=n+4+f_{0} \geq n+4+|V(C)|$
- $2|V(C)| \geq n+4$
- $|V(C)| \geq \frac{1}{2}(n+4)$

Claim
$3|V(C)| \leq 2 f_{0}$

Proof: number of empty faces

Fact
$|V(C)| \leq f_{0}$

- $2 n-4=|F(G)|=f_{0}+3(n-|V(C)|)$
- $3|V(C)|=n+4+f_{0} \geq n+4+|V(C)|$
- $2|V(C)| \geq n+4$
- $|V(C)| \geq \frac{1}{2}(n+4)$

Claim
$3|V(C)| \leq 2 f_{0}$

$$
\text { - } 3|V(C)|=n+4+f_{0} \geq n+4+\frac{3}{2}|V(C)|
$$

Proof: number of empty faces

Fact
$|V(C)| \leq f_{0}$

- $2 n-4=|F(G)|=f_{0}+3(n-|V(C)|)$
- $3|V(C)|=n+4+f_{0} \geq n+4+|V(C)|$
- $2|V(C)| \geq n+4$
- $|V(C)| \geq \frac{1}{2}(n+4)$

Claim
$3|V(C)| \leq 2 f_{0}$

$$
\begin{aligned}
& \text { - } 3|V(C)|=n+4+f_{0} \geq n+4+\frac{3}{2}|V(C)| \\
& \text { - } \frac{3}{2}|V(C)| \geq n+4
\end{aligned}
$$

Proof: number of empty faces

Fact
$|V(C)| \leq f_{0}$

- $2 n-4=|F(G)|=f_{0}+3(n-|V(C)|)$
- $3|V(C)|=n+4+f_{0} \geq n+4+|V(C)|$
- $2|V(C)| \geq n+4$
- $|V(C)| \geq \frac{1}{2}(n+4)$

Claim
$3|V(C)| \leq 2 f_{0}$

- $3|V(C)|=n+4+f_{0} \geq n+4+\frac{3}{2}|V(C)|$
- $\frac{3}{2}|V(C)| \geq n+4$
- $|V(C)| \geq \frac{2}{3}(n+4)$

Proof: empty faces

Lemma

Let $[w, x, y, z]$ be a subpath of C, let $\alpha=[x, y, z]$ be a 2-face of H_{1} and let $\beta \neq \alpha$ be the face of H incident with $x z$. If $\varphi=[w, x, y]$ a 2-face of H_{2} then β is an empty face.

Proof: empty faces

Lemma

Let $[w, x, y, z]$ be a subpath of C, let $\alpha=[x, y, z]$ be a 2-face of H_{1} and let $\beta \neq \alpha$ be the face of H incident with $x z$. If $\varphi=[w, x, y]$ a 2-face of H_{2} then β is an empty face.

Proof: empty faces

Lemma

Let $[w, x, y, z]$ be a subpath of C, let $\alpha=[x, y, z]$ be a 2-face of H_{1} and let $\beta \neq \alpha$ be the face of H incident with $x z$. If $\varphi=[w, x, y]$ a 2-face of H_{2} then β is an empty face.

empty face

Proof:

Proof: empty faces

Proof: empty faces

Proof: empty faces

empty face

Proof: empty faces

Proof: empty faces

Thank you.

