Circumference of essentially 4-connected planar graphs

Igor Fabrici

P.J. Šafárik University, Košice, Slovakia

joint work with

Jochen Harant, Samuel Mohr, Jens M. Schmidt

Technische Universität, Ilmenau, Germany

GGTW 2®19

Ghent, August 12, 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

circumference

• $\operatorname{circ}(G)$ is the length of a longest cycle of G

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

circumference

• $\operatorname{circ}(G)$ is the length of a longest cycle of G

trivial separator

• A 3-separator S of a 3-connected planar graph G is trivial if one of two components of G - S is a single vertex.

circumference

• $\operatorname{circ}(G)$ is the length of a longest cycle of G

trivial separator

• A 3-separator S of a 3-connected planar graph G is *trivial* if one of two components of G - S is a single vertex.

essential connectivity

• A 3-connected planar graph *G* is *essentially* 4-connected if every 3-separator of *G* is trivial.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Lower bounds on circ for planar graphs

Let G be a planar graph and let n = |V(G)|.

2-connected planar graphs

•
$$circ(K_{2,n-2}) = 4$$

Lower bounds on circ for planar graphs

Let G be a planar graph and let n = |V(G)|.

2-connected planar graphs

• $circ(K_{2,n-2}) = 4$

4-connected planar graphs

Every 4-connected planar graph G is hamiltonian [Tutte, 1956], i.e. • circ(G) = n.

Lower bounds on circ for planar graphs

Let G be a planar graph and let n = |V(G)|.

2-connected planar graphs

• $circ(K_{2,n-2}) = 4$

4-connected planar graphs

Every 4-connected planar graph G is hamiltonian [Tutte, 1956], i.e. • $\operatorname{circ}(G) = n$.

イロト 不得 トイヨト イヨト ヨー ろくで

3-connected planar graphs

For every 3-connected planar graph G,

•
$$circ(G) \ge cn^{\log_3 2}$$
, for some $c \ge 1$ [Chen, Yu, 2002]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

essentially 4-connected planar graphs

For every essentially 4-connected planar graph G,

• circ(G) $\geq \frac{2}{5}(n+2)$ [Jackson, Wormald, 1992]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

essentially 4-connected planar graphs

For every essentially 4-connected planar graph G,

• circ(G) $\geq \frac{2}{5}(n+2)$ [Jackson, Wormald, 1992]

essentially 4-connected planar triangulations

For every essentially 4-connected planar triangulation G,

• circ(G) $\geq \frac{13}{21}(n+4)$ [F., Harant, Jendrol, 2016]

イロト 不得 トイヨト イヨト ヨー ろくで

◆□> ◆□> ◆三> ◆三> ・三> のへの

construction

• G^* is a 4-connected plane triangulation on n^* vertices

construction

- G^* is a 4-connected plane triangulation on n^* vertices
- $a, b \in E(G^*)$ adjacent edges, incident with no common face

イロト (理) (ヨ) (ヨ) (ヨ) (の)

construction

- G^* is a 4-connected plane triangulation on n^* vertices
- $a, b \in E(G^*)$ adjacent edges, incident with no common face

イロト (理) (ヨ) (ヨ) (ヨ) (の)

• C^* is a hamiltonian cycle of G^* containing a, b

construction

- G^* is a 4-connected plane triangulation on n^* vertices
- $a, b \in E(G^*)$ adjacent edges, incident with no common face

イロト 不得 トイヨト イヨト ヨー ろくで

- C^* is a hamiltonian cycle of G^* containing a, b
- G^* has $2n^* 4$ (triangular) faces

construction

- G^* is a 4-connected plane triangulation on n^* vertices
- $a, b \in E(G^*)$ adjacent edges, incident with no common face

イロト 不得 トイヨト イヨト ヨー ろくで

- C^* is a hamiltonian cycle of G^* containing a, b
- G^* has $2n^* 4$ (triangular) faces
- G is the Kleetope of G^*

construction

- G^* is a 4-connected plane triangulation on n^* vertices
- $a, b \in E(G^*)$ adjacent edges, incident with no common face

- C^* is a hamiltonian cycle of G^* containing a, b
- G^* has $2n^* 4$ (triangular) faces
- G is the Kleetope of G^*
- G is an essentially 4-connected planar triangulation

construction

- G^* is a 4-connected plane triangulation on n^* vertices
- $a, b \in E(G^*)$ adjacent edges, incident with no common face

イロト 不得 トイヨト イヨト ヨー ろくで

- C* is a hamiltonian cycle of G* containing a, b
- G^* has $2n^* 4$ (triangular) faces
- G is the Kleetope of G*
- G is an essentially 4-connected planar triangulation
- G has $n = n^* + (2n^* 4) = 3n^* 4$ vertices

- G^* is a 4-connected plane triangulation on n^* vertices
- a, b ∈ E(G^{*}) adjacent edges, incident with no common face
- C^* is a hamiltonian cycle of G^* containing a, b
- G^* has $2n^* 4$ (triangular) faces
- G is the Kleetope of G*
- G is an essentially 4-connected planar triangulation
- G has $n = n^* + (2n^* 4) = 3n^* 4$ vertices
- circ(G) = $2n^* = \frac{2}{3}(n+4)$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - わへぐ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - わへぐ

Construction

Construction

Theorem (F., Harant, Mohr, Schmidt, 2019+)

For every essentially 4-connected planar graph G on n vertices,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

• circ(G)
$$\geq \frac{5}{8}(n+2)$$
.

Theorem (F., Harant, Mohr, Schmidt, 2019+)

For every essentially 4-connected planar graph G on n vertices,

• circ(G)
$$\geq \frac{5}{8}(n+2)$$
.

Theorem (F., Harant, Mohr, Schmidt, 2019+)

For every essentially 4-connected planar triangulation G on n vertices,

• circ(G)
$$\geq \frac{2}{3}(n+4)$$
.

Moreover, this bound is tight.

Let G be an essentially 4-connected plane graph and let C be a cycle of G of length at least 5.

Tutte cycle

 A cycle C of G is a Tutte cycle if V(G) \ V(C) is an independent set of vertices of degree 3.

Let G be an essentially 4-connected plane graph and let C be a cycle of G of length at least 5.

Tutte cycle

 A cycle C of G is a Tutte cycle if V(G) \ V(C) is an independent set of vertices of degree 3.

more Tutte cycles

Every cycle C' of G with $V(C) \subseteq V(C')$ is a Tutte cycle as well.

Let G be an essentially 4-connected plane graph and let C be a cycle of G of length at least 5.

Tutte cycle

 A cycle C of G is a Tutte cycle if V(G) \ V(C) is an independent set of vertices of degree 3.

more Tutte cycles

Every cycle C' of G with $V(C) \subseteq V(C')$ is a Tutte cycle as well.

extendable edge

An edge $xy \in E(C)$ is extendable if there is a common neighbour $z \notin V(C)$ of x and y.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

• for $4 \le n \le 10$, G is hamiltonian

- for $4 \le n \le 10$, G is hamiltonian
- let $n \ge 11$

- for $4 \le n \le 10$, G is hamiltonian
- let $n \ge 11$
- G contains a Tutte cycle of length at least 5

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

- for $4 \le n \le 10$, G is hamiltonian
- let $n \ge 11$
- G contains a Tutte cycle of length at least 5

(日)、(型)、(E)、(E)、(E)、(O)()

• let C be a longest Tutte cycle of G

- for $4 \le n \le 10$, G is hamiltonian
- let $n \ge 11$
- G contains a Tutte cycle of length at least 5

(日)、(型)、(E)、(E)、(E)、(O)()

- let C be a longest Tutte cycle of G
- C has no extendable edge

Proof: Tutte cycle with chords

- let H = G[V(C)]
- H is a plane triangulation and C is a hamiltonian cycle of H

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

- a face of *H* is *empty* if it is also a face of *G*
- F_0 is the set of all empty faces of H; $f_0 = |F_0|$

• a *j*-face of H is incident with exactly j edges of E(C)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

• each 2-face and each 1-face of H is empty

Fact

Fact $|V(C)| \leq f_0$

Fact

 $|V(C)| \leq f_0$

•
$$2n-4 = |F(G)| = f_0 + 3(n - |V(C)|)$$

Fact

 $|V(C)| \leq f_0$

•
$$2n-4 = |F(G)| = f_0 + 3(n - |V(C)|)$$

•
$$3|V(C)| = n + 4 + f_0 \ge n + 4 + |V(C)|$$

Fact

 $|V(C)| \leq f_0$

•
$$2n-4 = |F(G)| = f_0 + 3(n - |V(C)|)$$

•
$$3|V(C)| = n + 4 + f_0 \ge n + 4 + |V(C)|$$

•
$$2|V(C)| \ge n+4$$

Fact

 $|V(C)| \leq f_0$

- $2n-4 = |F(G)| = f_0 + 3(n |V(C)|)$
- $3|V(C)| = n + 4 + f_0 \ge n + 4 + |V(C)|$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

•
$$2|V(C)| \ge n+4$$

•
$$|V(C)| \geq \frac{1}{2}(n+4)$$

Fact

 $|V(C)| \leq f_0$

•
$$2n-4 = |F(G)| = f_0 + 3(n - |V(C)|)$$

•
$$3|V(C)| = n + 4 + f_0 \ge n + 4 + |V(C)|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

•
$$2|V(C)| \ge n+4$$

•
$$|V(C)| \ge \frac{1}{2}(n+4)$$

Claim

 $3|V(C)| \leq 2f_0$

Fact

 $|V(C)| \leq f_0$

•
$$2n-4 = |F(G)| = f_0 + 3(n - |V(C)|)$$

•
$$3|V(C)| = n + 4 + f_0 \ge n + 4 + |V(C)|$$

•
$$2|V(C)| \ge n+4$$

•
$$|V(C)| \ge \frac{1}{2}(n+4)$$

Claim

 $3|V(C)| \leq 2f_0$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Fact

 $|V(C)| \leq f_0$

•
$$2n-4 = |F(G)| = f_0 + 3(n - |V(C)|)$$

•
$$3|V(C)| = n + 4 + f_0 \ge n + 4 + |V(C)|$$

•
$$2|V(C)| \ge n+4$$

•
$$|V(C)| \geq \frac{1}{2}(n+4)$$

Claim

 $3|V(C)| \leq 2f_0$

• $3|V(C)| = n + 4 + f_0 \ge n + 4 + \frac{3}{2}|V(C)|$

Fact

 $|V(C)| \leq f_0$

•
$$2n-4 = |F(G)| = f_0 + 3(n - |V(C)|)$$

•
$$3|V(C)| = n + 4 + f_0 \ge n + 4 + |V(C)|$$

•
$$2|V(C)| \ge n+4$$

•
$$|V(C)| \geq \frac{1}{2}(n+4)$$

Claim

 $3|V(C)| \leq 2f_0$

•
$$3|V(C)| = n + 4 + f_0 \ge n + 4 + \frac{3}{2}|V(C)|$$

•
$$\frac{3}{2}|V(C)| \ge n+4$$

Fact

 $|V(C)| \leq f_0$

•
$$2n-4 = |F(G)| = f_0 + 3(n - |V(C)|)$$

•
$$3|V(C)| = n + 4 + f_0 \ge n + 4 + |V(C)|$$

•
$$2|V(C)| \ge n+4$$

•
$$|V(C)| \geq \frac{1}{2}(n+4)$$

Claim

 $3|V(C)| \leq 2f_0$

• $3|V(C)| = n + 4 + f_0 \ge n + 4 + \frac{3}{2}|V(C)|$

•
$$\frac{3}{2}|V(C)| \ge n+4$$

•
$$|V(C)| \ge \frac{2}{3}(n+4)$$

Lemma

Let [w, x, y, z] be a subpath of C, let $\alpha = [x, y, z]$ be a 2-face of H_1 and let $\beta \neq \alpha$ be the face of H incident with xz. If $\varphi = [w, x, y]$ a 2-face of H_2 then β is an empty face.

イロト 不得 トイヨト イヨト ヨー ろくで

Lemma

Let [w, x, y, z] be a subpath of C, let $\alpha = [x, y, z]$ be a 2-face of H_1 and let $\beta \neq \alpha$ be the face of H incident with xz. If $\varphi = [w, x, y]$ a 2-face of H_2 then β is an empty face.

イロト 不得 トイヨト イヨト ヨー ろくで

Lemma

Let [w, x, y, z] be a subpath of C, let $\alpha = [x, y, z]$ be a 2-face of H_1 and let $\beta \neq \alpha$ be the face of H incident with xz. If $\varphi = [w, x, y]$ a 2-face of H_2 then β is an empty face.

▲ロ ▶ ▲ 冊 ▶ ▲ 目 ▶ ▲ 目 ▶ ● の Q @

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 - のへで

empty face

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ៚

Thank you.