Aalto University
School of Science

## Using Tutte Paths for Finding Long Cycles in Planar Graphs

Andreas Schmid

August 12, 2019

## Introduction

## Three Applications for Tutte Paths

## Algorithms for finding Tutte Paths

Aalto University
School of Science

## But first... P-Bridges

For a path $P$ in $G$, a $P$-bridge $J$ is


## But first... P-Bridges

For a path $P$ in $G$, a $P$-bridge $J$ is

- a component $K$ of $G \backslash V(P)$


Aalto University
School of Science

## But first... P-Bridges

For a path $P$ in $G$, a $P$-bridge $J$ is

- a component $K$ of $G \backslash V(P)$
- plus the edges connecting $K$ to $P$ and their end-vertices (attachments).


Aalto University
School of Science

## Tutte paths - Definition

Let $G$ be a 2-connected plane graph with outer face $C_{G}$. Then a path $T$ is called a Tutte path if:

- every $T$-bridge has at most three attachments and

■ any $T$-bridge containing an edge of $C_{G}$ has exactly two attachments (outer bridges).

## Tutte paths - Definition

Let $G$ be a 2-connected plane graph with outer face $C_{G}$. Then a path $T$ is called a Tutte path if:

- every $T$-bridge has at most three attachments and
- any $T$-bridge containing an edge of $C_{G}$ has exactly two attachments (outer bridges).
Given endvertices $\boldsymbol{x}$ and $\boldsymbol{y}$ and intermediate edge $\alpha$, let $x-\alpha-y$ path denote a Tutte path from $x$ to $y$ through $\alpha$.


## Tutte Paths - Example



Aalto University
School of Science

## Tutte paths! What are they good for?

Aalto University
School of Science

## Tutte paths! What are they good for?

Often used to show Hamiltonicity of a graph class:
■ 4-connected planar graphs [Tutte56].

- 4-connected projective planar graphs [Thomas94].
- 5-connected toroidal graphs [Thomas97].


## Tutte paths! What are they good for?

Often used to show Hamiltonicity of a graph class:

- 4-connected planar graphs [Tutte56].
- 4-connected projective planar graphs [Thomas94].
- 5-connected toroidal graphs [Thomas97].

Or to make even stronger statements:

- 4-connected planar graphs are Hamiltonian-connected [Thomassen83].
- 4-connected planar graphs are 2-edge Hamiltonian-connected [Ozeki2014].
- 4-connected projective planar graphs are Hamiltonian-connected [Kawarabayaschi2015].

Aalto University
School of Science

## Using Tutte paths right!

Big open question: Which 3-connected planar graphs are Hamiltonian?

Aalto University
School of Science

## Using Tutte paths right!

Big open question: Which 3-connected planar graphs are Hamiltonian?


## Using Tutte paths right!

Big open question: Which 3-connected planar graphs are Hamiltonian?


- If $G$ has no internal 3-separator [Thomassen83].


## Using Tutte paths right!

Big open question: Which 3-connected planar graphs are Hamiltonian?


- If $G$ has no internal 3-separator [Thomassen83].
- If $G$ has at most three 3-separators [Brinkmann2016].


## Using Tutte paths right!



## Using Tutte paths right!

Also used to show relaxations of Hamiltonicity:

Aalto University
School of Science

## Using Tutte paths right!

Also used to show relaxations of Hamiltonicity:

- A cycle of length at least $\frac{5(n+2)}{8}$ in essentially 4-connected planar graphs [Fabrici18].

Aalto University
School of Science

## Using Tutte paths right!

Also used to show relaxations of Hamiltonicity:

- A cycle of length at least $\frac{5(n+2)}{8}$ in essentially 4-connected planar graphs [Fabrici18].
■ Every circuit graph contains a closed 2-walk [Gao95].


## Using Tutte paths right!

Also used to show relaxations of Hamiltonicity:

- A cycle of length at least $\frac{5(n+2)}{8}$ in essentially 4-connected planar graphs [Fabrici18].
■ Every circuit graph contains a closed 2-walk [Gao95].
- Circuit graphs always have a 3-tree with few degree three vertices [Nakamoto2009].


## Graphs with at most three 3-separators



## Essentially 4-connected planar graphs



## Essentially 4-connected planar graphs



## Essentially 4-connected planar graphs



## Closed 2-Walks in Circuit Graphs



## Algorithmic Difficulty in their Proofs



Aalto University
School of Science

## Algorithmic Difficulty in their Proofs



- Decompose the graph into blocks.


## Algorithmic Difficulty in their Proofs



- Decompose the graph into blocks.
- Recurse on block $B$ to compute $P$.


## Algorithmic Difficulty in their Proofs



- Decompose the graph into blocks.
- Recurse on block $B$ to compute $P$.
- Construct subgraph $F$.


## Algorithmic Difficulty in their Proofs



- Decompose the graph into blocks.
- Recurse on block $B$ to compute $P$.
- Construct subgraph $F$.
- Recurse on $F$ to compute $Q$.


## Algorithmic Difficulty in their Proofs



- Decompose the graph into blocks.

■ Recurse on block $B$ to compute $P$.

- Construct subgraph $F$.
- Recurse on $F$ to compute $Q$.


## Our Algorithm

- Decompose the graph into blocks.


Aalto University
School of Science

## Our Algorithm

- Decompose the graph into blocks.
- We modify a block $B$ to $B^{\prime}$. depending on its 2-separators


Aalto University
School of Science

## Our Algorithm

- Decompose the graph into blocks.
- We modify a block $B$ to $B^{\prime}$. depending on its 2-separators
- Recurse on $B^{\prime}$ to compute $P$.


Aalto University
School of Science

## Our Algorithm

- Decompose the graph into blocks.
- We modify a block $B$ to $B^{\prime}$. depending on its 2-separators
- Recurse on $B^{\prime}$ to compute $P$.

- If $P$ contains a virtual edge: recurse on split off graph.

Aalto University
School of Science

## Our Algorithm

- Decompose the graph into blocks.
- We modify a block $B$ to $B^{\prime}$. depending on its



## 2-separators

- Recurse on $B^{\prime}$ to compute $P$.
- If $P$ contains a virtual edge: recurse on split off graph.

Aalto University
School of Science

## Our Algorithm

- Decompose the graph into blocks.
- We modify a block $B$ to $B^{\prime}$. depending on its



## 2-separators

- Recurse on $B^{\prime}$ to compute $P$.
- If $P$ contains a virtual edge: recurse on split off graph.
- Merge the resulting path vititpatios fiomoliter blocks.
Using Tutte Paths for Finding Long Cycles in Planar Graphs


## Running Time

- Decomposing $G$ into blocks is in $O(n)$.

Aalto University
School of Science

## Running Time

- Decomposing $G$ into blocks is in $O(n)$.
- All critical 2-separators for the incremental computation of $P$ can be found in $O(n)$.


## Running Time

- Decomposing $G$ into blocks is in $O(n)$.
- All critical 2-separators for the incremental computation of $P$ can be found in $O(n)$.
- Our Algorithm does at most $O(n)$ recursions.

Aalto University
School of Science

## Running Time

- Decomposing $G$ into blocks is in $O(n)$.
- All critical 2-separators for the incremental computation of $P$ can be found in $O(n)$.
- Our Algorithm does at most $O(n)$ recursions.

Therefore:
Theorem
Let $G$ be a 2-connected plane graph and let $x, y \in V(G)$ and $\alpha \in E(G) . A x-\alpha-y$ path in $G$ can be found in $O\left(n^{2}\right)$ time.

## Tutte Paths in Linear Time

In ICALP'19, Biedl and Kindermann gave the first linear time algorithm

■ Based on decomposing the graph into 3-connected subgraphs.

Aalto University
School of Science

## Tutte Paths in Linear Time

In ICALP'19, Biedl and Kindermann gave the first linear time algorithm

- Based on decomposing the graph into 3-connected subgraphs.
- Both end-vertices have to lie on the outer face.
- The authors say this cannot be generalized for arbitrary end-vertex position.


## Future Work

- Find more applications...
- Improve the running time
$\square$ Can our algorithm be improved to $O(n)$ running time?


## Future Work

- Find more applications...
- Improve the running time
- Can our algorithm be improved to $O(n)$ running time?
- Find an algorithm for other variants of Tutte paths (for example in circuit graphs [Jackson2002]).

Aalto University
School of Science

## Future Work

- Find more applications...
- Improve the running time
- Can our algorithm be improved to $O(n)$ running time?
- Find an algorithm for other variants of Tutte paths (for example in circuit graphs [Jackson2002]).


## Thank You! <br> Questions?

Aalto University
School of Science

