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Concerning hamiltonicity for

plane triangulations and polyhedra

the same results seem to hold –

though they can have much fewer edges.

(Ratio: 3|V |−6
2|V | )
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• Whitney (1931): 4-connected plane

triangulations are hamiltonian

• Tutte (1956): 4-connected

polyhedra are hamiltonian

(25 years)
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• Jackson, Yu (2002): plane triangulations

with at most three 3-cuts are hamilto-

nian

• B., Zamfirescu (2019): polyhedra

with at most three 3-cuts are hamilto-

nian

(17 years)
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• plane triangulations with six 3-cuts can

be non-hamiltonian

• polyhedra with six 3-cuts can be non-

hamiltonian
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• for plane triangulations with four or five

3-cuts: unknown, but 1-tough

• for polyhedra with four or five 3-cuts:

unknown, but 1-tough
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• Hakimi, Schmeichel, Thomassen (1979):
4-connected planar triangulations have
at least |V |/ log |V | hamiltonian cycles.

(improved to 12
5

(|V | − 2) (2018), B., Souffriau,

Van Cleemput)

• From a result of Thomassen (1983): 4-
connected polyhedra have at least 6 hamil-
tonian cycles.

already 40 years ago. . .

(Alahmadi, Aldred, Thomassen 2019: 5-connected

triangulations have an exponential number of

hamiltonian cycles)



Only trivial lower bounds are known, but

computations suggest that for |V | ≥ 18 this is the 4

connected polyhedron with the smallest number of

hamiltonian cycles:

2|V |2 − 12|V |+ 16 hamiltonian cycles



Hakimi, Schmeichel, Thomassen (1979)
with result of Whitney (1931):

Each zigzag in a triangle-pair in a
4-connected triangulation can be extended

to a hamiltonian cycle.

There is a linear number of such zigzags.



Problem: a single hamiltonian cycle can

contain a linear number of these zigzags. . .

. . . giving in total a

constant number of hamiltonian cycles.
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A hamiltonian cycle with k disjoint zigzags

guarantees 2k hamiltonian cycles by

“switching”.

This explains the . . . / log |V | in the formula.



The main contribution of the 2018-paper:

counting differently via counting bases:

Definition:
Let G be a graph and let C be a collection of

hamiltonian cycles of G. The pair (S, r), where
S ⊂ 2E(G) and r is a function r : S → 2E(G), is called

a counting base for G and C if the pair (S, r) has the
following properties:

(i) for all S ∈ S, there is a hamiltonian cycle C ∈ C
saturating S.

(ii) for all S ∈ S, r(S) ⊆ E(G) (not necessarily in
S) so that S 6⊂ r(S) and for each hamiltonian
cycle C ∈ C saturating S we have that z(C, S) =
(C \ S) ∪ r(S) is a hamiltonian cycle in C.

(iii) for all S1 6= S2, S1, S2 ∈ S and C saturating S1

and S2, we have that z(C, S1) 6= z(C, S2).



Informally: A switching subgraph is a

subgraph that can be extended to a

hamiltonian cycle and can be switched.



Very informally:

The counting base lemma:

If one has a set S of switching subgraphs,

so that each switching subgraph overlaps

with at most c others, then there are at

least |S|/c hamiltonian cycles.
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Two big problems for polyhedra:

(a) The subgraphs must be extendable to

hamiltonian cycles in polyhedra – not just

in triangulations.

(b) Unlike triangulations, polyhedra can lo-

cally look very differently – there might

e.g. be no triangle pairs.

Some polyhedra do not have a single of the

switching subgraphs we have seen so far.
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The key for solving (a):

Lemma: (Jackson, Yu, 2002)

Let (G,F ) be a circuit graph, r, z be vertices

of G and e ∈ E(F ). Then G contains an

F -Tutte cycle X through e, r and z.

Circuit graph: G plane, 2-connected, F facial cycle, for each
2-cut each component contains elements from F

F-Tutte cycle: cycle C, so that bridges contain at most 3
endpoints on C and at most 2 if it contains an edge of F .



With Jackson/Yu:
In a 4-connected polyhedron each of the following
subgraphs can be extended to a hamiltonian cycle,

if it is present in the polyhedron. . .



Unfortunately

• for each of those switching subgraphs

there are 4-connected polyhedra not con-

taining it

• for each pair of those switching subgraphs

there are 4-connected polyhedra contain-

ing only a small constant number of them

but
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Theorem

Each 4-connected polyhedron has a linear
number of those three switching subgraphs.

So with the counting base lemma:
4-connected polyhedra have at least a
linear number of hamiltonian cycles.
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Let fi denote the faces of size i.

Lemma

• A polyhedron has at

least 3f3 − |V | hour-

glasses.

• f3 ≥ 8+
∑

i>4(i− 4)fi
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Assign the value 0 to angles of
triangles and quadrangles

and value i−4
i to each angle of an i-gon

with i > 4.

Define a(v) as the sum of all angle values
around v.
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v∈V a(v) =

∑
i>4(i− 4)fi



As hourglasses are switching subgraphs:

With Sw the set of switching subgraphs this

gives

|Sw| ≥ 24 + 3
∑

v∈V a(v)− |V |
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Furthermore assign the following weights

w′(v) to vertices in switching subgraphs:

1
1/2

1/2

1

1/2

1/2

With w(v) the sum of all w′(v) we have:∑
v∈V w(v) = |Sw|



Lemma

Let G = (V,E) be a plane graph with

minimum degree 4. Then for each v ∈ V we

have

a(v) + w(v) ≥ 2
5

so

∑
v∈V a(v) + |Sw| ≥ 2

5|V |
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Lemma:
For 4-connected polyhedra we have

|Sw| ≥ 1
20|V |+ 6.

So: 4-connected polyhedra have at least a

linear number of hamiltonian cycles.

Proof: Set a(V ) =
∑

v∈V a(v).

We have two equations:

|Sw| ≥ 24 + 3a(V )− |V |

|Sw| ≥ 2
5|V | − a(V )

compute intersection
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Lemma:

Polyhedra G = (V,E) with at most one

3-cut and for some c > 0 at least

(2 + 2
33 + c)|V | edges have at least a linear

number of hamiltonian cycles.
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Thank you for your
attention!
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