4-Connected Polyhedra have a Linear Number of Hamiltonian Cycles

Gunnar Brinkmann, Nico Van Cleemput

Concerning hamiltonicity for

plane triangulations and polyhedra
the same results seem to hold -
though they can have much fewer edges.

$$
\text { (Ratio: } \frac{3|V|-6}{2|V|} \text {) }
$$

- Whitney (1931): 4-connected plane triangulations are hamiltonian
- Tutte (1956): 4-connected polyhedra are hamiltonian
(25 years)
- Jackson, Yu (2002): plane triangulations with at most three 3-cuts are hamiltonian
- B., Zamfirescu (2019): polyhedra with at most three 3-cuts are hamiltonian
(17 years)
- plane triangulations with six 3-cuts can be non-hamiltonian
- polyhedra with six 3-cuts can be nonhamiltonian

UNIVERSITEIT
Faculty of Science

- for plane triangulations with four or five 3-cuts: unknown, but 1-tough
- for polyhedra with four or five 3-cuts: unknown, but 1-tough

Faculty of Science

- Hakimi, Schmeichel, Thomassen (1979): 4-connected planar triangulations have at least $|V| / \log |V|$ hamiltonian cycles. (improved to $\frac{12}{5}(|V|-2)$ (2018), B., Souffriau, Van Cleemput)
- From a result of Thomassen (1983): 4connected polyhedra have at least 6 hamiltonian cycles.

already 40 years ago.. .

(Alahmadi, Aldred, Thomassen 2019: 5-connected triangulations have an exponential number of hamiltonian cycles)

Only trivial lower bounds are known, but computations suggest that for $|V| \geq 18$ this is the 4 connected polyhedron with the smallest number of hamiltonian cycles:

$2|V|^{2}-12|V|+16$ hamiltonian cycles

Hakimi, Schmeichel, Thomassen (1979)

 with result of Whitney (1931):Each zigzag in a triangle-pair in a 4-connected triangulation can be extended to a hamiltonian cycle.

There is a linear number of such zigzags.

Problem: a single hamiltonian cycle can

 contain a linear number of these zigzags...
...giving in total a
constant number of hamiltonian cycles.

A hamiltonian cycle with k disjoint zigzags guarantees 2^{k} hamiltonian cycles by
"switching".

This explains the $\ldots / \log |V|$ in the formula.

The main contribution of the 2018-paper:
counting differently via counting bases:

Definition:

Let G be a graph and let \mathcal{C} be a collection of hamiltonian cycles of G. The pair (\mathcal{S}, r), where $\mathcal{S} \subset 2^{E(G)}$ and r is a function $r: \mathcal{S} \rightarrow 2^{E(G)}$, is called a counting base for G and \mathcal{C} if the pair (\mathcal{S}, r) has the following properties:
(i) for all $S \in \mathcal{S}$, there is a hamiltonian cycle $C \in \mathcal{C}$ saturating S.
(ii) for all $S \in \mathcal{S}, r(S) \subseteq E(G)$ (not necessarily in \mathcal{S}) so that $S \not \subset r(S)$ and for each hamiltonian cycle $C \in \mathcal{C}$ saturating S we have that $z(C, S)=$ $(C \backslash S) \cup r(S)$ is a hamiltonian cycle in \mathcal{C}.
(iii) for all $S_{1} \neq S_{2}, S_{1}, S_{2} \in \mathcal{S}$ and C saturating S_{1} and S_{2}, we have that $z\left(C, S_{1}\right) \neq z\left(C, S_{2}\right)$.

Informally: A switching subgraph is a subgraph that can be extended to a hamiltonian cycle and can be switched.

Very informally:

The counting base lemma:

If one has a set S of switching subgraphs, so that each switching subgraph overlaps with at most c others, then there are at least $|S| / c$ hamiltonian cycles.

Two big problems for polyhedra:

(a) The subgraphs must be extendable to hamiltonian cycles in polyhedra - not just in triangulations.
(b) Unlike triangulations, polyhedra can Iocally look very differently - there might e.g. be no triangle pairs.

Some polyhedra do not have a single of the switching subgraphs we have seen so far.

The key for solving (a):

Lemma: (Jackson, Yu, 2002)
Let (G, F) be a circuit graph, r, z be vertices of G and $e \in E(F)$. Then G contains an F-Tutte cycle X through e, r and z.

Circuit graph: G plane, 2-connected, F facial cycle, for each 2-cut each component contains elements from F
F-Tutte cycle: cycle C, so that bridges contain at most 3 endpoints on C and at most 2 if it contains an edge of F.

With Jackson/Yu:

In a 4-connected polyhedron each of the following subgraphs can be extended to a hamiltonian cycle, if it is present in the polyhedron...

Unfortunately

- for each of those switching subgraphs there are 4-connected polyhedra not containing it
- for each pair of those switching subgraphs there are 4-connected polyhedra containing only a small constant number of them

but

Theorem

Each 4-connected polyhedron has a linear number of those three switching subgraphs.

So with the counting base lemma: 4-connected polyhedra have at least a
linear number of hamiltonian cycles.

4 1

Let f_{i} denote the faces of size i.

Lemma

- A polyhedron has at least $3 f_{3}-|V|$ hourglasses.
- $f_{3} \geq 8+\sum_{i>4}(i-4) f_{i}$

Assign the value 0 to angles of triangles and quadrangles and value $\frac{i-4}{i}$ to each angle of an i-gon with $i>4$.

Define $a(v)$ as the sum of all angle values around v.

$$
\sum_{v \in V} a(v)=\sum_{i>4}(i-4) f_{i}
$$

As hourglasses are switching subgraphs:

With \mathcal{S}_{w} the set of switching subgraphs this gives

$$
\left|\mathcal{S}_{w}\right| \geq 24+3 \sum_{v \in V^{2}} a(v)-|V|
$$

Wetb

Furthermore assign the following weights $w^{\prime}(v)$ to vertices in switching subgraphs:

With $w(v)$ the sum of all $w^{\prime}(v)$ we have:

$$
\sum_{v \in V} w(v)=\left|\mathcal{S}_{w}\right|
$$

Lemma

Let $G=(V, E)$ be a plane graph with minimum degree 4. Then for each $v \in V$ we have

$$
a(v)+w(v) \geq \frac{2}{5}
$$

SO

$$
\sum_{v \in V} a(v)+\left|\mathcal{S}_{w}\right| \geq \frac{2}{5}|V|
$$

Lemma:

For 4-connected polyhedra we have

$$
\left|\mathcal{S}_{w}\right| \geq \frac{1}{20}|V|+6
$$

So: 4-connected polyhedra have at least a linear number of hamiltonian cycles.

Proof: Set $a(V)=\sum_{v \in V} a(v)$.
We have two equations:

$$
\begin{gathered}
\left|\mathcal{S}_{w}\right| \geq 24+3 a(V)-|V| \\
\left|\mathcal{S}_{w}\right| \geq \frac{2}{5}|V|-a(V)
\end{gathered}
$$

compute intersection

Lemma:

> Polyhedra $G=(V, E)$ with at most one 3-cut and for some $c>0$ at least $\left(2+\frac{2}{33}+c\right)|V|$ edges have at least a linear number of hamiltonian cycles.

Thank you for your attention!

