Component factors of simple edge-chromatic critical graphs

Eckhard Steffen

Paderborn University

August 12, 2019

Definition

A graph G is k-edge-colorable if there is a function $c : E(G) \rightarrow [k]$ such that any two adjacent edges receive different colors.

Definition

A graph G is k-edge-colorable if there is a function $c : E(G) \to [k]$ such that any two adjacent edges receive different colors.

The edge-chromatic number $\chi'(G)$ is the smallest number k such that G is k-edge-colorable.

Definition

A graph G is k-edge-colorable if there is a function $c : E(G) \to [k]$ such that any two adjacent edges receive different colors. The edge-chromatic number $\chi'(G)$ is the smallest number k such that G is k-edge-colorable.

Theorem [Vizing (1965)]

If G is a simple graph, then $\chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$, where $\Delta(G)$ is the maximum vertex degree of G.

Definition

A graph G is k-edge-colorable if there is a function $c : E(G) \to [k]$ such that any two adjacent edges receive different colors. The edge-chromatic number $\chi'(G)$ is the smallest number k such that G is k-edge-colorable.

Theorem [Vizing (1965)]

If G is a simple graph, then $\chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$, where $\Delta(G)$ is the maximum vertex degree of G.

• Class 1: $\chi'(G) = \Delta(G)$ • Class 2: $\chi'(G) = \Delta(G) + 1$.

Definition

A graph G is k-edge-colorable if there is a function $c : E(G) \to [k]$ such that any two adjacent edges receive different colors. The edge-chromatic number $\chi'(G)$ is the smallest number k such that G is k-edge-colorable.

Theorem [Vizing (1965)]

If G is a simple graph, then $\chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$, where $\Delta(G)$ is the maximum vertex degree of G.

► Class 1: $\chi'(G) = \Delta(G)$ ► Class 2: $\chi'(G) = \Delta(G) + 1$.

Definition

For $k \ge 2$, a class 2 graph G is k-critical, if $\Delta(G) = k$, $\chi'(H) < \chi'(G)$ for every proper subgraph H of G.

Definition

A graph G is k-edge-colorable if there is a function $c : E(G) \to [k]$ such that any two adjacent edges receive different colors. The edge-chromatic number $\chi'(G)$ is the smallest number k such that G is k-edge-colorable.

Theorem [Vizing (1965)]

If G is a simple graph, then $\chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$, where $\Delta(G)$ is the maximum vertex degree of G.

► Class 1: $\chi'(G) = \Delta(G)$ ► Class 2: $\chi'(G) = \Delta(G) + 1$.

Definition

For $k \ge 2$, a class 2 graph G is k-critical, if $\Delta(G) = k$, $\chi'(H) < \chi'(G)$ for every proper subgraph H of G.

Theorem [Vizing (1965)]

Every class 2 graph has an edge-chromatic critical subgraph.

Examples

Figure: K_4 with a subdivided edge

A graph G is k-overfull if |V(G)| is odd, $\Delta(G) \leq k$ and $\frac{|E(G)|}{\lfloor \frac{1}{2}|V(G)|\rfloor} > k$.

Examples

Figure: K_4 with a subdivided edge

A graph G is k-overfull if |V(G)| is odd, $\Delta(G) \leq k$ and $\frac{|E(G)|}{\lfloor \frac{1}{2}|V(G)|\rfloor} > k$.

Figure: Petersen graph

Examples

Figure: K_4 with a subdivided edge

A graph G is k-overfull if |V(G)| is odd, $\Delta(G) \leq k$ and $\frac{|\mathcal{E}(G)|}{\lfloor \frac{1}{2} |V(G)| \rfloor} > k$.

Figure: Petersen graph

Vizing's Adjacency Lemma (1964)

Let G be a critical graph. If $e = xy \in E(G)$, then at least $\Delta(G) - d_G(y) + 1$ vertices in $N(x) \setminus \{y\}$ have degree $\Delta(G)$.

Conjecture:

For all $k \ge 2$: every edge-chromatic k-critical graph has odd order. [Beineke, Wilson (1973), Jakobsen (1974)]

Conjecture:

False

For all $k \ge 2$: every edge-chromatic k-critical graph has odd order. [Beineke, Wilson (1973), Jakobsen (1974)]

Disproved by: Goldberg (1981) for k = 3; Chetwynd/Fiol (1983) for k = 4; Grünewald, ES (1999) for all k.

Conjecture:

False

For all $k \ge 2$: every edge-chromatic k-critical graph has odd order. [Beineke, Wilson (1973), Jakobsen (1974)]

Disproved by: Goldberg (1981) for k = 3; Chetwynd/Fiol (1983) for k = 4; Grünewald, ES (1999) for all k.

Conjecture:

- 1. If G is an edge-chromatic critical graph of even order, then G has a 1-factor. [Fiorini, Wilson (1977)]
- 2. If G is an edge-chromatic critical graph of odd order and v is a vertex of minimum degree in G, then G v has a 1-factor. [Chetwynd, Yap (1983)]

Conjecture:

False

For all $k \ge 2$: every edge-chromatic k-critical graph has odd order. [Beineke, Wilson (1973), Jakobsen (1974)]

Disproved by: Goldberg (1981) for k = 3; Chetwynd/Fiol (1983) for k = 4; Grünewald, ES (1999) for all k.

Conjecture:

False

- 1. If G is an edge-chromatic critical graph of even order, then G has a 1-factor. [Fiorini, Wilson (1977)]
- 2. If G is an edge-chromatic critical graph of odd order and v is a vertex of minimum degree in G, then G v has a 1-factor. [Chetwynd, Yap (1983)]

Disproved by: Choudum (1993) for k = 3; Grünewald, ES (1999) for all k.

2-Factor Conjecture [Vizing 1968]

Every edge-chromatic critical graph has a 2-factor.

2-Factor Conjecture [Vizing 1968]

Open

Every edge-chromatic critical graph has a 2-factor.

2-Factor Conjecture [Vizing 1968]

Open

Every edge-chromatic critical graph has a 2-factor.

Results:

- trivial for 2-critical graphs.
- ► True for overfull graphs. [Grünewald, ES (2004)]
- ▶ If $\Delta(G) \ge \frac{6}{7}|V(G)|$, then G is Hamiltonian and thus has a 2-factor. [Lou, Zhao (2013)]

Theorem [Bej, ES (2017)]

For $k \geq 3$, the following statements are equivalent:

- 1. Every k-critical graph has a 2-factor.
- 2. Every *k*-critical graph of even order has a 2-factor.
- 3. Every k-critical graph of odd order has a 2-factor.
- 4. Every k-critical graph G with $\delta(G) = k 1$ has a 2-factor.
- 5. Every k-critical graph G with $\delta(G) = 2$ has a 2-factor.
- 6. For every k-critical graph G with a divalent vertex v: G v has a 2-factor.

Independence Number Conjecture [Vizing (1968)]

If G is an edge-chromatic critical graph, then $\alpha(G) \leq \frac{1}{2}|V(G)|$; i.e. every independent set in G contains at most half of the vertices of G.

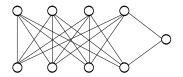
Independence Number Conjecture [Vizing (1968)] Open

If G is an edge-chromatic critical graph, then $\alpha(G) \leq \frac{1}{2}|V(G)|$; i.e. every independent set in G contains at most half of the vertices of G.

Independence Number Conjecture [Vizing (1968)] Open

If G is an edge-chromatic critical graph, then $\alpha(G) \leq \frac{1}{2}|V(G)|$; i.e. every independent set in G contains at most half of the vertices of G.

If true, then best possible:



Independence Number Conjecture [Vizing (1968)] Open

If G is an edge-chromatic critical graph, then $\alpha(G) \leq \frac{1}{2}|V(G)|$; i.e. every independent set in G contains at most half of the vertices of G.

Independence Number Conjecture [Vizing (1968)] Open

If G is an edge-chromatic critical graph, then $\alpha(G) \leq \frac{1}{2}|V(G)|$; i.e. every independent set in G contains at most half of the vertices of G.

Results:

Let G be an edge-chromatic critical graph, then

- $\alpha(G) \leq \frac{1}{2}|V(G)|$ if $|V(G)| \leq 2\Delta(G)$. [Luo and Zhao (2006)]
- $\alpha(G) < \frac{2}{3}|V(G)|$ [Brinkmann et al (2000)]; improved to

 $\alpha(G) < \frac{3}{5}|V(G)|$. [Woodall (2010)].

Independence Number Conjecture [Vizing (1968)] Open

If G is an edge-chromatic critical graph, then $\alpha(G) \leq \frac{1}{2}|V(G)|$; i.e. every independent set in G contains at most half of the vertices of G.

Results:

Let G be an edge-chromatic critical graph, then

- $\alpha(G) \leq \frac{1}{2}|V(G)|$ if $|V(G)| \leq 2\Delta(G)$. [Luo and Zhao (2006)]
- $\alpha(G) < \frac{2}{3}|V(G)|$ [Brinkmann et al (2000)]; improved to

 $\alpha(G) < \frac{3}{5}|V(G)|.$ [Woodall (2010)].

Theorem [ES (2018)]

For every $\epsilon > 0$, there is a set C_{ϵ} of edge-chromatic critical graphs such that

- 1. Vizing's Independence Number Conjecture is eqivalent to its restriction on $\mathcal{C}_{\epsilon},$ and
- 2. if $G \in C_{\epsilon}$, then $\alpha(G) < (\frac{1}{2} + \epsilon)|V(G)|$.

Component factors

Clearly, if G has a 2-factor, then $\alpha(G) \leq \frac{1}{2}|V(G)|$.

Component factors

Clearly, if G has a 2-factor, then $\alpha(G) \leq \frac{1}{2}|V(G)|$.

Q: Does every edge-chromatic critical graph have a [1,2]-factor?

Component factors

Clearly, if G has a 2-factor, then $\alpha(G) \leq \frac{1}{2}|V(G)|$.

Q: Does every edge-chromatic critical graph have a [1,2]-factor? Yes

Theorem [Klopp, ES (2019)]

Every edge-chromatic critical graph has a [1,2]-factor.

2-Factor Conjecture [Vizing 1968]

Every edge-chromatic critical graph has a 2-factor.

Independence Number Conjecture [Vizing (1968)]

If G is an edge-chromatic critical graph, then $\alpha(G) \leq \frac{1}{2}|V(G)|$.

2-Factor Conjecture [Vizing 1968]

Every edge-chromatic critical graph has a 2-factor.

Independence Number Conjecture [Vizing (1968)]

If G is an edge-chromatic critical graph, then $\alpha(G) \leq \frac{1}{2}|V(G)|$.

Theorem [Woodall (2010)]

If G is an edge-chromatic critical graph, then $\alpha(G) \leq \frac{3}{5}|V(G)|$.

2-Factor Conjecture [Vizing 1968]

Every edge-chromatic critical graph has a 2-factor.

Independence Number Conjecture [Vizing (1968)]

If G is an edge-chromatic critical graph, then $\alpha(G) \leq \frac{1}{2}|V(G)|$.

Theorem [Woodall (2010)]

If G is an edge-chromatic critical graph, then $\alpha(G) \leq \frac{3}{5}|V(G)|$.

For a set $S \subseteq V(G)$ let iso(G - S) be the number of isolated vertices in G - S. i.e. Woodall's results says $iso(G - S) \leq \frac{3}{2}|S|$ if G - S is a maximum independent set of G.

2-Factor Conjecture [Vizing 1968]

Every edge-chromatic critical graph has a 2-factor.

Independence Number Conjecture [Vizing (1968)]

If G is an edge-chromatic critical graph, then $\alpha(G) \leq \frac{1}{2}|V(G)|$.

Theorem [Woodall (2010)]

If G is an edge-chromatic critical graph, then $\alpha(G) \leq \frac{3}{5}|V(G)|$.

For a set $S \subseteq V(G)$ let iso(G - S) be the number of isolated vertices in G - S. i.e. Woodall's results says $iso(G - S) \leq \frac{3}{2}|S|$ if G - S is a maximum independent set of G.

Theorem [Klopp, ES (2019)]

If G is an edge-chromatic critical graph and $S \subseteq V(G)$, then

$$\operatorname{iso}(G-S) < \left(rac{3}{2} - rac{1}{\Delta(G)}
ight) |S|.$$

The theorem opens the door to results on graph factors:

The theorem opens the door to results on graph factors:

Theorem [Akiyama, Era (1980)]

A graph G has a [1,2]-factor if and only if the following inequality holds:

 $iso(G - S) \leq 2|S|$ for all subsets S of V(G).

The theorem opens the door to results on graph factors:

Theorem [Akiyama, Era (1980)] A graph G has a [1,2]-factor if and only if the following inequality holds: $iso(G - S) \le 2|S|$ for all subsets S of V(G).

Theorem [Klopp, ES (2019)]

Every edge-chromatic critical graph has a [1,2]-factor.

A { $K_{1,1}, \ldots, K_{1,t}, C_m : m \ge 3$ }-factor of G is called a star-cycle factor.

Clearly, every [1,2]-factor can be decomposed into a $\{K_{1,1}, K_{1,2}, C_m : m \ge 3\}$ -factor. We are interested in the minimum number of $K_{1,2}$ -components in such a factor. Why? see next slide

What can be said about component factors of graphs if $iso(G - S) \le c|S|$ and $1 \le c < 2$; in particular for c = 3/2?

What can be said about component factors of graphs if $iso(G - S) \le c|S|$ and $1 \le c < 2$; in particular for c = 3/2?

Theorem [Tutte (1953)]

A graph G has a $\{K_{1,1}, C_m : m \ge 3\}$ -factor if and only if $iso(G - S) \le |S|$ for all $S \subseteq V(G)$.

What can be said about component factors of graphs if $iso(G - S) \le c|S|$ and $1 \le c < 2$; in particular for c = 3/2?

Theorem [Tutte (1953)]

A graph G has a $\{K_{1,1}, C_m : m \ge 3\}$ -factor if and only if $iso(G - S) \le |S|$ for all $S \subseteq V(G)$.

A fractional matching of G is a function $f : E(G) \to [0,1]$ such that $\sum_{e \in E_G(v)} f(e) \le 1$ for all $v \in V(G)$. The fractional matching number $\mu_f(G)$ is

$$\sup\{\sum_{e\in E(G)} f(e) : f \text{ is a fractional matching of } G\}.$$

Clearly, $\mu_f(G) \leq \frac{1}{2}|V(G)|$ and if $\sum_{e \in E(G)} f(e) = \frac{1}{2}|V(G)|$, then f is called a fractional perfect matching.

What can be said about component factors of graphs if $iso(G - S) \le c|S|$ and $1 \le c < 2$; in particular for c = 3/2?

Theorem [Tutte (1953)]

A graph G has a $\{K_{1,1}, C_m : m \ge 3\}$ -factor if and only if $iso(G - S) \le |S|$ for all $S \subseteq V(G)$.

A fractional matching of G is a function $f : E(G) \to [0,1]$ such that $\sum_{e \in E_G(v)} f(e) \le 1$ for all $v \in V(G)$. The fractional matching number $\mu_f(G)$ is

$$\sup\{\sum_{e\in E(G)} f(e) : f \text{ is a fractional matching of } G\}.$$

Clearly, $\mu_f(G) \leq \frac{1}{2}|V(G)|$ and if $\sum_{e \in E(G)} f(e) = \frac{1}{2}|V(G)|$, then f is called a fractional perfect matching.

Theorem [Scheinerman, Ullman (1997)]

A graph G has a fractional perfect matching if and only if $iso(G - S) \leq |S|$ for all $S \subseteq V(G)$.

Star-cycle factors and fractional matchings

If F is a star-cycle factor of G, then t_i^F denotes the number of $K_{1,i}$ -components of F and let $l(G) = \min\{\sum_{i=1}^{\infty} (i-1)t_i^F : F \text{ is a star-cycle factor of } G\}.$

Theorem [Klopp, ES (2019)]

Let G be a graph, $n \ge 0$ be an integer and λ be the minimum integer such that $iso(G - S) \le \lambda |S|$ for all $S \subseteq V(G)$.

If $\mu_f(G) = \frac{1}{2}(|V(G)| - n)$, then $\lambda \leq \lceil \frac{n}{\delta(G)} \rceil + 1$ and G has a

 $\{K_{1,1},\ldots,K_{1,\lambda},C_m:m\geq 3\}$ -factor F, such that $I(G)=\sum_{i=1}^{\lambda}(i-1)t_i^F=n.$

Furthermore, the $K_{1,j}$ -components are induced subgraphs and their center vertices are in A and their leaves are isolated vertices in D (in the Gallai-Edmonds decomposition (D, A, C) of G).

Approximating the 2-factor conjecture: [1,2]-factors and fractional matchings

Corollary [Klopp, ES (2019)]

Let G be a graph, that has a $\{K_{1,1}, K_{1,2}, C_m : m \ge 3\}$ -factor and let n be a natural number. Then, $\min(G, K_{1,2}) = n$ if and only if $\mu_f(G) = \frac{1}{2}(|V(G)| - n)$.

Approximating the 2-factor conjecture: [1,2]-factors and fractional matchings

Corollary [Klopp, ES (2019)]

Let G be a graph, that has a $\{K_{1,1}, K_{1,2}, C_m : m \ge 3\}$ -factor and let n be a natural number. Then, $\min(G, K_{1,2}) = n$ if and only if $\mu_f(G) = \frac{1}{2}(|V(G)| - n)$.

Corollary [Klopp, ES (2019)]

Let G be a graph and let n, m be integers with $0 < n \le m \le 2n$. If $iso(G - S) \le \frac{m}{n}|S|$ for all subsets $S \subseteq V(G)$, then (i) $min(G, K_{1,2}) \le \frac{m-n}{m+n}|V(G)|$, (ii) $\alpha(G) \le \frac{m}{m+n}|V(G)|$.

The aforementioned Theorem of Tutte (1953) is the special case m = n of this corollary.

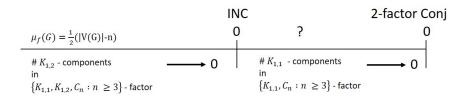
Further results

Let G be a graph with $\Delta(G) = k$. The k-deficiency s(G) of G is k|V(G)| - 2|E(G)|. The function f with $f(e) = \frac{1}{k}$ for each $e \in E(G)$ is a fractional matching on G. Hence,

Corollary [Klopp, ES (2019)]

If G is a critical graph, then $\mu_f(G) \geq \frac{1}{2}(|V(G)| - \lfloor \frac{s(G)}{k} \rfloor)$, and therefore, min $(G, K_{1,2}) \leq \lfloor \frac{s(G)}{k} \rfloor$, and $\alpha(G) \leq \frac{1}{2}(|V(G)| + \lfloor \frac{s(G)}{k} \rfloor)$.

Summary



Figure

Conjecture / Question

Conjecture:

Every edge-chromatic critical graph has a fractional perfect matching.

2-factor Conjecture \Rightarrow Fractional Perfect Matching Conjecture \Rightarrow Independence Number Conjecture

Conjecture / Question

Conjecture:

Every edge-chromatic critical graph has a fractional perfect matching.

2-factor Conjecture \Rightarrow Fractional Perfect Matching Conjecture \Rightarrow Independence Number Conjecture

Question:

Let $k \ge 3$ and G be a k-critical graph. If G does not have a 1-factor, then $\mu_f(G) > \mu(G)$.

Thank you