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1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.
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Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.

- no finite upper bound
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- proved for 3-colourable graphs

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.

- no finite upper bound

- a set of 183 real weights is sufficient
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Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.
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Th. 1-2-3 Conjecture holds if !(G) > 0.99985 n  and n is large enough.
(Zhong 2019) 
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1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.

Th. Weights 1,2,3,4,5 suffice. (Kalkowski, Karoński, Pfender 2010) 

Th. Weights 1,2,3,4 suffice for regular graphs. (P. 2019+) 

- known prewiously (with 1,2,3) for 2 and 3-regular graphs;

and for 5-regular graphs (Bensmail 2019)
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Th. Weights 1,2,3,4 suffice for regular graphs. (P. 2019+) 

Th. Weights 1,2,3 suffice for d-regular graphs with d large enough. 
(P. 2019+) 
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