THE 1-2-3 CONJECTURE ALMOST ALMOST HOLDS FOR REGULAR GRAPHS

JAKUB PRZYBYłO

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY,
KRAKOW, POLAND

Every non-trivial graph contains a pair of vertices with equal degrees.

Every non-trivial graph contains a pair of vertices with equal degrees.
"How to define an irregular graph"(Chartrand, Erdős, Oellermann, 1988)

Every non-trivial graph contains a pair of vertices with equal degrees.
"How to define an irregular graph"(Chartrand, Erdős, Oellermann, 1988)
$c: E \rightarrow\{1,2, \ldots, \mathrm{k}\}$

Every non-trivial graph contains a pair of vertices with equal degrees.
"How to define an irregular graph"(Chartrand, Erdős, Oellermann, 1988)
$c: E \rightarrow\{1,2, \ldots, k\}$

$$
s(v):=\Sigma_{e \ni v} c(e)
$$

Every non-trivial graph contains a pair of vertices with equal degrees.
"How to define an irregular graph"(Chartrand, Erdős, Oellermann, 1988)
$c: E \rightarrow\{1,2, \ldots, k\}$

$$
s(v):=\Sigma_{e \ni v} c(e)
$$

$s(u) \neq s(v)$ for $u v \in E$

Every non-trivial graph contains a pair of vertices with equal degrees.
"How to define an irregular graph"(Chartrand, Erdős, Oellermann, 1988)
$c: E \rightarrow\{1,2, \ldots, k\}$

$$
s(v):=\Sigma_{e \ni v} c(e)
$$

$s(u) \neq s(v)$ for $u v \in E$

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3 so that adjacent vertices receive distinct weighted degrees.

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3 so that adjacent vertices receive distinct weighted degrees.

- proved for 3-colourable graphs

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.

- proved for 3-colourable graphs
- no finite upper bound

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.

- proved for 3-colourable graphs
- no finite upper bound
- a set of 183 real weights is sufficient

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.
Th. Weights $1,2, \ldots, 30$ suffice.
(Addario-Berry, Dalal, McDiarmid, Reed, Thomason 2007)

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.
Th. Weights $1,2, \ldots, 30$ suffice.
(Addario-Berry, Dalal, McDiarmid, Reed, Thomason 2007)
Th. Weights $1,2, \ldots, 16$ suffice. (Addario-Berry, Dalal, Reed 2008)

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.
Th. Weights $1,2, \ldots, 30$ suffice.
(Addario-Berry, Dalal, McDiarmid, Reed, Thomason 2007)
Th. Weights $1,2, . . .16$ suffice. (Addario-Berry, Dalal, Reed 2008)

Th. Weights $1,2, \ldots, 13$ suffice. (Wang, Yu 2008)

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.
Th. Weights $1,2, \ldots, 30$ suffice.
(Addario-Berry, Dalal, McDiarmid, Reed, Thomason 2007)
Th. Weights $1,2, . . ., 16$ suffice. (Addario-Berry, Dalal, Reed 2008)

- a.a.s. 1,2 suffice for a random graph ($G_{n, p}$)

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.
Th. Weights $1,2, \ldots, 30$ suffice.
(Addario-Berry, Dalal, McDiarmid, Reed, Thomason 2007)
Th. Weights $1,2, . . ., 16$ suffice. (Addario-Berry, Dalal, Reed 2008)

- a.a.s. 1,2 suffice for a random graph ($G_{n, p}$)

Th. Determining if 1,2 suffice is NP-complete. (Dudek, Wajc 2011)

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.
Th. Weights $1,2, \ldots, 30$ suffice.
(Addario-Berry, Dalal, McDiarmid, Reed, Thomason 2007)
Th. Weights $1,2, \ldots, 16$ suffice. (Addario-Berry, Dalal, Reed 2008)

- a.a.s. 1,2 suffice for a random graph ($G_{n, p}$)

Th. Determining if 1,2 suffice is NP-complete. (Dudek, Wajc 2011)
Th. Determining if 1,2 suffice is in P for bipartite graphs. (Thomassen, Wu, Zhang 2016)

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.

Th. Weights $1,2,3,4,5$ suffice. (Kalkowski, Karoński, Pfender 2010)

- a.a.s. 1,2 suffice for a random graph ($G_{n, p}$)

Th. Determining if 1,2 suffice is NP-complete. (Dudek, Wajc 2011)
Th. Determining if 1,2 suffice is in P for bipartite graphs. (Thomassen, Wu, Zhang 2016)

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.

Th. Weights $1,2,3,4,5$ suffice. (Kalkowski, Karoński, Pfender 2010)

Th. 1-2-3 Conjecture holds if $\delta(G)>0.99985 n$ and n is large enough. (Zhong 2019)

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.

Th. Weights $1,2,3,4,5$ suffice. (Kalkowski, Karoński, Pfender 2010)

- list version of 1-2-3 Conjecture (Bartnicki, Grytczuk, Niwczyk 2009)

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.

Th. Weights $1,2,3,4,5$ suffice. (Kalkowski, Karoński, Pfender 2010)

- list version of 1-2-3 Conjecture (Bartnicki, Grytczuk, Niwczyk 2009)
- total version of 1-2-3 Conjecture (P., Woźniak 2010)

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.

Th. Weights $1,2,3,4,5$ suffice. (Kalkowski, Karoński, Pfender 2010)

- list version of 1-2-3 Conjecture (Bartnicki, Grytczuk, Niwczyk 2009)
- total version of 1-2-3 Conjecture (P., Woźniak 2010)

Every graph is (2,3)-choosable, Combnatorica 36 (Wong, Zhu 2016)

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.

Th. Weights $1,2,3,4,5$ suffice. (Kalkowski, Karoński, Pfender 2010)

Th. Weights $1,2,3,4$ suffice for regular graphs. (P. 2019+)

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.

Th. Weights $1,2,3,4,5$ suffice. (Kalkowski, Karoński, Pfender 2010)

Th. Weights $1,2,3,4$ suffice for regular graphs. (P. 2019+)

- known prewiously (with $1,2,3$) for 2 and 3 -regular graphs;

1-2-3 Conjecture (Karoński, Łuczak, Thomason 2004)
Every graph without an isolated edge can be weighted with 1,2,3
so that adjacent vertices receive distinct weighted degrees.

Th. Weights $1,2,3,4,5$ suffice. (Kalkowski, Karoński, Pfender 2010)

Th. Weights $1,2,3,4$ suffice for regular graphs. (P. 2019+)

- known prewiously (with 1,2,3) for 2 and 3-regular graphs; and for 5 -regular graphs (Bensmail 2019)
$-2-3-4$-colouring of d-regular graphs

$-2-3-4-c o l o u r i n g$ of d-regular graphs

maximal independent
$-2-3-4$-colouring of d-regular graphs

-2-3-4-colouring of d-regular graphs

maximal independent
$-2-3-4-c o l o u r i n g$ of d-regular graphs

maximal independent
$-2-3-4-c o l o u r i n g$ of d-regular graphs

maximal independent
$-2-3-4-c o l o u r i n g$ of d-regular graphs

maximal independent
-2-3-4-colouring of d-regular graphs

maximal independent
-2-3-4-colouring of d-regular graphs

maximal independent
-2-3-4-colouring of d-regular graphs

maximal independent

1-2-3-4-colouring of d-regular graphs

maximal independent
$1-2-3-4$-colouring of d-regular graphs

maximal independent
$1-2-3-4$-colouring of d-regular graphs

1-2-3-4-colouring of d-regular graphs

maximal independent

1-2-3-4-colouring of d-regular graphs

1-2-3-4-colouring of d-regular graphs

1-2-3-4-colouring of d-regular graphs

1-2-3-4-colouring of d-regular graphs

maximal independent

1-2-3-4-colouring of d-regular graphs

maximal independent

1-2-3-4-colouring of d-regular graphs

1-2-3-4-colouring of d-regular graphs

maximal independent
$1-2-3-4$-colouring of d-regular graphs

1-2-3-4-colouring of d-regular graphs

1-2-3-4-colouring of d-regular graphs

$1-2-3-4$-colouring of d-regular graphs

$1-2-3-4$-colouring of d-regular graphs

-2-3-4-colouring of d-regular graphs

maximal independent
-2-3-4-colouring of d-regular graphs

maximal independent
-2-3-4-colouring of d-regular graphs

maximal independent

-2-3-4-colouring of d-regular graphs

maximal independent

$1-2-3-4$-colouring of d-regular graphs

1-2-3-4-colouring of d-regular graphs

1-2-3-4-colouring of d-regular graphs

THE 1-2-3 CONJECTURE ALMOST ALMOST HOLDS FOR REGULAR GRAPHS

Th. Weights $1,2,3,4$ suffice for regular graphs. (P. 2019+)

THE 1-2-3 CONJECTURE ALMOST ALMOST HOLDS FOR REGULAR GRAPHS

Th. Weights $1,2,3,4$ suffice for regular graphs. (P. 2019+)

Th. Weights $1,2,3$ suffice for d-regular graphs with d large enough.

Th. Every graph is (2,3)-choosable (Wong, Zhu 2016)

Th. Every graph is (2,3)-choosable (Wong, Zhu 2016)

Con. Every graph is (2,2)-choosable (Wong, Zhu 2011; P. Woźniak 2011)

Th. Every graph is (2,3)-choosable (Wong, Zhu 2016)

Con. Every graph is (2,2)-choosable (Wong, Zhu 2011; P. Woźniak 2011)

Con. Every graph is (1,3)-choosable (Wong, Zhu 2011)

Th. Every graph is (2,3)-choosable (Wong, Zhu 2016)

Con. Every graph is (2,2)-choosable (Wong, Zhu 2011; P. Woźniak 2011)

Con. Every graph is (1,3)-choosable (Wong, Zhu 2011)

THANK YOU!

