LARGE INDEPENDENT SETS IN TRIANGLE-FREE SUBCUBIC GRAPHS

Wouter Cames van Batenburg Jan Goedgebeur Gwenaël Joret G graph on n vertices

Independence number α

'Subcubic' = maximum degree at most 3

How large is α in triangle-free subcubic graphs?

Staton '79 If G subcubic and triangle-free then $\alpha \ge \frac{5}{14}n$

Only two tight examples among connected graphs

$$n = 14$$
 $\alpha = 5$

n = 14 $\alpha = 5$

Fraughnaugh & Locke '95 If *G* subcubic, triangle-free, and connected then $\alpha \ge \frac{11}{30}n - \frac{2}{15}$

Essentially tight:

Conjecture (Locke '86)

If G subcubic, triangle-free, and 2-connected then $\alpha \ge \frac{3}{8}n$, except for finitely many graphs

6 exceptions (Bajnok & Brinkmann '95):

Conjecture (Fraughnaugh & Locke / Bajnok & Brinkmann '95) If *G* subcubic, triangle-free, 2-connected, and *G* not one of the six exceptional graphs, then $\alpha \ge \frac{3}{8}n$

Conjecture (Albertson, Bollobas, Tucker '76) If *G* subcubic, triangle-free, and planar then $\alpha \ge \frac{3}{8}n$

Conjecture (Fraughnaugh & Locke '95) If *G* subcubic, triangle-free, and *G* contains none of the six exceptional graphs as subgraph then $\alpha \ge \frac{3}{8}n$ **Conjecture** (Fraughnaugh & Locke / Bajnok & Brinkmann '95) If *G* subcubic, triangle-free, 2-connected, and *G* not one of the six exceptional graphs, then $\alpha \ge \frac{3}{8}n$

Heckman & Thomas '06 (conjectured by Albertson-Bollobas-Tucker '76) If *G* subcubic, triangle-free, and planar then $\alpha \ge \frac{3}{8}n$

Conjecture (Fraughnaugh & Locke '95) If *G* subcubic, triangle-free, and *G* contains none of the six exceptional graphs as subgraph then $\alpha \ge \frac{3}{8}n$

Main result

Cames van Batenburg, Goedgebeur, J. '19+

If G subcubic, triangle-free, and G contains none of the six exceptional graphs as subgraph then $\alpha \ge \frac{3}{8}n$

Enough to show the statement when

- ▶ G connected, and
- G critical, meaning $\alpha(G e) > \alpha(G)$ $\forall e \in E(G)$

A sparsity measure:

$$\mu := \frac{9}{24}n_3 + \frac{10}{24}n_2 + \frac{11}{24}n_1 + \frac{12}{24}n_0 - \frac{2}{24}$$

where $n_i :=$ number of vertices of degree *i*

Equivalently:

$$\mu = \frac{6n - |E(G)| - 1}{12}$$

Remarks:

 $\mu \ge \frac{3}{8}n - \frac{1}{12}$ $\left\lceil \frac{3}{8}n - \frac{1}{12} \right\rceil \ge \frac{3}{8}n \text{ because } n \in \mathbb{Z}$

hence, to show $\alpha \ge \frac{3}{8}n$ it is enough to prove $\alpha \ge \mu$

Recall current assumptions:

- ► G subcubic and triangle-free
- G has none of the six exceptional graphs as subgraph
- ► G connected and critical

Attempt 1: Simply show that $\alpha \ge \mu$

Bad graphs

Every 8-augmentation of a bad graph is bad:

The two bad graphs on 16 vertices:

(however, $\alpha = \frac{3}{8}n$)

Attempt 2: Show that $\alpha \ge \mu$, unless *G* is bad

This is true

To prove this, we consider a slightly stronger statement

Dangerous graphs

 C_5 is dangerous

Join of two bad graphs is dangerous:

 $\alpha = \mu$ if *G* dangerous

Main technical theorem (CvB-G-J '19+) Suppose

- ► G subcubic and triangle-free
- G has none of the six exceptional graphs as subgraph
- G connected and critical, and
- ► G not bad

then $\alpha \geqslant \mu$.

If moreover

• G has \geq 3 degree-2 vertices and

• G not dangerous

then $\alpha \ge \mu + \frac{1}{12}$.

Plan of the proof

G minimum counter-example

- ► G almost 3-connected: If X is a 2-cutset then G X has exactly two components, with one isomorphic to K₁ or K₂
- ► *G* has no bad subgraph
- Deal with degree-2 vertices:
 - case where neighbors have both degree 2
 - case where neighbors have both degree 3
 - case where neighbors have degree 2 and 3
- \rightarrow G is cubic and 3-connected
 - G has no 4-cycle
 - ▶ G has no 6-cycle
 - ► G has no dangerous subgraph (in particular, no 5-cycle)

Final argument: Local structure around a shortest even cycle

Open problems

Staton '79 If G subcubic and triangle-free then $\frac{n}{\alpha} \leq \frac{14}{5}$

Recall: $\frac{n}{\alpha} \leq \chi_f$

Dvořák, Sereni, Volec '14 (conjectured by Heckman & Thomas '01) If G subcubic and triangle-free then $\chi_f \leq \frac{14}{5}$

Could the upper bound on χ_f be improved if we further assume

- ► G connected, or
- ▶ G 2-connected, or
- G planar, or
- ► G has none of the 6 exceptional graphs as subgraph?