LARGE INDEPENDENT SETS IN TRIANGLE-FREE SUBCUBIC GRAPHS

Wouter Cames van Batenburg
Jan Goedgebeur
Gwenaël Joret
G graph on n vertices

Independence number α
'Subcubic' $=$ maximum degree at most 3

How large is α in triangle-free subcubic graphs?

Staton '79 If G subcubic and triangle-free then $\alpha \geqslant \frac{5}{14} n$
Only two tight examples among connected graphs

$$
n=14 \quad \alpha=5
$$

$n=14 \quad \alpha=5$

Fraughnaugh \& Locke '95
If G subcubic, triangle-free, and connected then $\alpha \geqslant \frac{11}{30} n-\frac{2}{15}$

Essentially tight:

Conjecture (Locke '86)
If G subcubic, triangle-free, and 2 -connected then $\alpha \geqslant \frac{3}{8} n$, except for finitely many graphs

6 exceptions (Bajnok \& Brinkmann '95):

Conjecture (Fraughnaugh \& Locke / Bajnok \& Brinkmann '95) If G subcubic, triangle-free, 2 -connected, and G not one of the six exceptional graphs, then $\alpha \geqslant \frac{3}{8} n$

Conjecture (Albertson, Bollobas, Tucker '76)
If G subcubic, triangle-free, and planar then $\alpha \geqslant \frac{3}{8} n$

Conjecture (Fraughnaugh \& Locke '95)
If G subcubic, triangle-free, and G contains none of the six
exceptional graphs as subgraph then $\alpha \geqslant \frac{3}{8} n$

Conjecture (Fraughnaugh \& Locke / Bajnok \& Brinkmann '95) If G subcubic, triangle-free, 2 -connected, and G not one of the six exceptional graphs, then $\alpha \geqslant \frac{3}{8} n$

Heckman \& Thomas '06 (conjectured by Albertson-Bollobas-Tucker '76)
If G subcubic, triangle-free, and planar then $\alpha \geqslant \frac{3}{8} n$

Conjecture (Fraughnaugh \& Locke '95) If G subcubic, triangle-free, and G contains none of the six exceptional graphs as subgraph then $\alpha \geqslant \frac{3}{8} n$

Main result

Cames van Batenburg, Goedgebeur, J. '19+ If G subcubic, triangle-free, and G contains none of the six exceptional graphs as subgraph then $\alpha \geqslant \frac{3}{8} n$

Enough to show the statement when

- G connected, and
- G critical, meaning $\alpha(G-e)>\alpha(G) \quad \forall e \in E(G)$

A sparsity measure:

$$
\mu:=\frac{9}{24} n_{3}+\frac{10}{24} n_{2}+\frac{11}{24} n_{1}+\frac{12}{24} n_{0}-\frac{2}{24}
$$

where $n_{i}:=$ number of vertices of degree i

Equivalently:

$$
\mu=\frac{6 n-|E(G)|-1}{12}
$$

Remarks:

$$
\begin{aligned}
& \mu \geqslant \frac{3}{8} n-\frac{1}{12} \\
& \left\lceil\frac{3}{8} n-\frac{1}{12}\right\rceil \geqslant \frac{3}{8} n \quad \text { because } n \in \mathbb{Z}
\end{aligned}
$$

hence, to show $\alpha \geqslant \frac{3}{8} n$ it is enough to prove $\alpha \geqslant \mu$

Recall current assumptions:

- G subcubic and triangle-free
- G has none of the six exceptional graphs as subgraph
- G connected and critical

Attempt 1: Simply show that $\alpha \geqslant \mu$

Bad graphs

is bad

Every 8-augmentation of a bad graph is bad:

The two bad graphs on 16 vertices:

$\alpha=\mu-\frac{1}{12}$ if G bad

(however, $\alpha=\frac{3}{8} n$)

Attempt 2: Show that $\alpha \geqslant \mu$, unless G is bad

This is true

To prove this, we consider a slightly stronger statement

Dangerous graphs

C_{5} is dangerous
Join of two bad graphs is dangerous:

$\alpha=\mu$ if G dangerous

Main technical theorem (CvB-G-J '19+)
Suppose

- G subcubic and triangle-free
- G has none of the six exceptional graphs as subgraph
- G connected and critical, and
- G not bad
then $\alpha \geqslant \mu$.

If moreover

- G has $\geqslant 3$ degree- 2 vertices and
- G not dangerous
then $\alpha \geqslant \mu+\frac{1}{12}$.

Plan of the proof

G minimum counter-example

- G almost 3 -connected: If X is a 2 -cutset then $G-X$ has exactly two components, with one isomorphic to K_{1} or K_{2}
- G has no bad subgraph
- Deal with degree-2 vertices:
- case where neighbors have both degree 2
- case where neighbors have both degree 3
- case where neighbors have degree 2 and 3
$\rightarrow G$ is cubic and 3 -connected
- G has no 4-cycle
- G has no 6 -cycle
- G has no dangerous subgraph (in particular, no 5-cycle)

Final argument: Local structure around a shortest even cycle

Open problems

Staton '79 If G subcubic and triangle-free then $\frac{n}{\alpha} \leqslant \frac{14}{5}$

Recall: $\quad \frac{n}{\alpha} \leqslant \chi_{f}$

Dvořák, Sereni, Volec '14 (conjectured by Heckman \& Thomas '01)
If G subcubic and triangle-free then $\chi_{f} \leqslant \frac{14}{5}$

Could the upper bound on χ_{f} be improved if we further assume

- G connected, or
- G 2-connected, or
- G planar, or
- G has none of the 6 exceptional graphs as subgraph?

