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Snarks

Definition

A snark is a connected cubic graph that has no 3-edge-colouring.

Snarks are crucial for many important problems and conjectures
in graph theory:

Four-Colour-Theorem/Problem

Cycle Double-Cover Conjecture

5-Flow Conjecture

Fulkerson’s Conjecture

– trivially true for 3-edge-colourable graphs
– open for snarks
– verified for graphs “close” to 3-edge-colourable graphs
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Small snarks

smallest snark

smallest 2-connected snark
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Non-trivial snarks

Similar simplifications for cycle-separating edge-cuts of size ≤ 3

=⇒ ‘nontrivial’ usually means

cyclically 4-edge-connected, and

girth > 4
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Cyclic connectivity

Cyclic connectivity is the smallest number of edges whose removal
leaves at least two components containing cycles.
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Measures of uncolourability

ω(G ) – oddness – minimum number of odd circuits in a 2-factor of G

ρe(G ) – minimum number of edges that have to be removed in order
to obtain a colourable graph
ρv (G ) – minimum number of vertices that have to be removed in
order to obtain a colourable graph

oddness is always even
ρv = ρe =: ρ – resistance
ρ(G ) ≤ ω(G ) for every bridgeless cubic G

Theorem

The following statements are equivalent for a bridgeless cubic graph G:

G is 3-edge-colourable

ω(G ) = 0

ρ(G ) = 0
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Parity Lemma

Lemma (Parity lemma)

Let M be a k-pole edge-coloured with three colours. Let ki be the number
of dangling edges coloured with colour i . Then

k1 ≡ k2 ≡ k3 ≡ k (mod 2).

Corollary

For every snark G the following hold:

ρ(G ) ≥ 2

ρ(G ) = 2 ⇐⇒ ω(G ) = 2
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Small snarks with large oddness

Theorem

For every snark G there exists a snark G ′ of order not exceeding that of G
such that ω(G ′) ≥ ω(G ) and the girth of G ′ is at least 5.

Corollary

Every snark with oddness ≥ ω and minimum order has girth at least 5.
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Small snarks with ω ≥ 4

Theorem

The smallest order of a snark with ω ≥ 4 is 28. There are exactly three
such snarks: two with connectivity 2 and one with connectivity 3.
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Small nontrivial snarks with ω ≥ 4

Question 1

What is the smallest order of a nontrivial snark with ω ≥ 4

Question 2 (weaker)

What is the smallest order of a snark with cyclic connectivity = 4
and ω ≥ 4?

Brinkmann, Goedgebeur, Hägglund & Markström (2013)
generated all cyclically 4-edge-connected snarks up to 36 vertices.

Theorem (Brinkmann et al. (2013))

All cyclically 4-edge-connected snarks up to 36 vertices have ω = 2.
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Martin Škoviera (Bratislava) Smallest snarks with oddness 4 16th August, 2017 10 / 22



Small nontrivial snarks with ω ≥ 4

Question 1

What is the smallest order of a nontrivial snark with ω ≥ 4

Question 2 (weaker)

What is the smallest order of a snark with cyclic connectivity = 4
and ω ≥ 4?
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Snark of order 44 and ω = 4

Constructed by Lukot’ka, Máčajová, Mazák & S. (2015)
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Main result

Theorem

The smallest number of vertices of a snark with cyclic connectivity 4
and ω ≥ 4 is 44.

There are exactly 31 such snarks, all with ω = 4.
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Main result
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Main result
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Main result

Theorem

The smallest number of vertices of a snark with cyclic connectivity 4
and ω ≥ 4 is 44.

There are exactly 31 such snarks, all with ω = 4.

The proof has two main ingredients:

Analysis of 3-edge-colourings conflicting on a cycle-separating
4-edge-cuts.

A “closure theorem” for cyclically 4-edge-connected graphs of
Andresen, Fleischner & Jackson (1988)
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Closure Theorem

Theorem (Andersen, Fleischner & Jackson, 1988)

Let H be a cyclically 4-edge-connected cubic graph with a cycle-separating
4-edge-cut S. Then each component of H − S can be extended to a
cyclically 4-edge-connected graph by adding two adjacent vertices.
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Sketch of proof

Suppose to the contrary there exists a snark G on < 44 vertices with
ω ≥ 4 and cyclic connectivity = 4.

Aim: Decompose G into two smaller cyclically 4-edge-connected snarks.

Parity lemma allows four types of colourings.

If a 4-pole is colourable, it admits at least two types of colourings.

If both sides are colourable, then both have two types of colourings
⇒ ρ(G ) = 2⇒ ω(G ) = 2 ... a contradiction.

⇒ At least one part is not 3-edge-colourable.
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Sketch of proof

We prove that each side can be extended to a snark by adding either

two adjacent vertices, or

two isolated edges

Martin Škoviera (Bratislava) Smallest snarks with oddness 4 16th August, 2017 18 / 22



Sketch of proof

We prove that each side can be extended to a snark by adding either

two adjacent vertices, or

two isolated edges
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Sketch of the proof

uncol. uncol.

CASE A: Both sides are not 3-edge-colourable

I We use the Closure Theorem

CASE B: One side is 3-edge-colourable, but the other is not
I We extend G2 to a snark by Closure Theorem.
I By minimality, G1 has exactly two types of colourings

(otherwise contradiction with the minimality of G ).
I We extend G1 to a snark G̃1 (the manner may be forced!)
I By minimality, G̃1 is also cyclically 4-edge-connected.
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End of proof

So far we have proved:

Every snark with ω ≥ 4, cyclic connectivity = 4, and minimum order
can be decomposed into two smaller cyclically 4-edge-connected
snarks.

If there is one on 42 or fewer vertices, it must arise by the reverse
process from two snarks on at most 36 vertices.

We have computationally verified all possible pairs of snarks and
checked that none of them has ω ≥ 4.
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Final remarks

Theorem

The smallest number of vertices of a snark with cyclic connectivity 4 and
ω ≥ 4 is 44.

To prove a similar result for nontrivial snarks (rather than just those
with cyclic connectivity = 4) we need to exclude the existence of cyclically
5-edge-connected snarks of orders 38− 42 with ω ≥ 4.

The existence of such snarks is unlikely.
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Thank you!
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