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The graph isomorphism problem

Two graphs are isomorphic if

there is a bijection of vertices

that preserves adjacency.

Isomorphic graphs
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The graph isomorphism problem

Two graphs are isomorphic if

there is a bijection of vertices

that preserves adjacency.

Graph isomorphism (GI):

Algorithmic task to decide

whether two graphs are

isomorphic.

Isomorphic graphs
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Unknown complexity

Is there an efficient algorithm for graph isomorphism?

Graph isomorphism and asymmetric graphs Pascal Schweitzer 4 / 38



Unknown complexity

Is there an efficient algorithm for graph isomorphism?

known

GI ∈ NP

GI NP-hard ⇒ SAT quasi-poly.

(⇒ ETH false)

GI NP-hard ⇒ PH collapses

(GI ∈ co-AM)

unknown

GI ∈ P?

Is GI NP-complete?

GI ∈ co-NP?

P

NP-complete

co-NP-complete

co-AM
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Current status

2O(
√

(n log n)) ⇒ 2(log(n)c)

[Babai using Luks,Zemlyachenko] (1981) [Babai] (2015)

Two major open subcases:

group isomorphism (given by multiplication table)

tournament isomorphism

Both subcases have 2O(log(n)2)-time algorithms.
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Problems equivalent to isomorphism

These following problems are polynomially equivalent:

GI: the graph isomorphism problem

col-GI: isomorphism problem of colored graphs

ISO: isomorphism of general combinatorial objects

Aut(G): compute generating set for automorphism group

|Aut(G)|: determine the size of Aut(G).

The graph isomorphism problem is actually the problem of

detecting symmetries of combinatorial objects.
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Automorphisms

An automorphism is an isomorphism from a graph to itself.

The automorphism group captures the intrinsic symmetries of

the graph.
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Some reductions

GI col-GI Aut(G) |Aut(G)|
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Some reductions

GI col-GI Aut(G) |Aut(G)|

G1 G2
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Some reductions

GI col-GI Aut(G) |Aut(G)|

G1 G2

W.l.o.g. G1,G2 connected.

|Aut(G1 ∪ G2)| =
{

2 · |Aut(G1)| · |Aut(G2)| if G1
∼= G2

|Aut(G1)| · |Aut(G2)| otherwise.
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Worst Case instances for IR algorithms

What is the running time of IR algorithms (such as nauty, or

traces, bliss, saucy, conauto)?
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Worst Case instances for IR algorithms

What is the running time of IR algorithms (such as nauty, or

traces, bliss, saucy, conauto)?

- In the worst case IR algorithms have exponential running time.

[Neuen, S.] (2017+)
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Worst Case instances for IR algorithms

What is the running time of IR algorithms (such as nauty, or

traces, bliss, saucy, conauto)?

- In the worst case IR algorithms have exponential running time.

[Neuen, S.] (2017+)

W

V

G

R(G)

v1 v2 v3

w1 w2 w3 w4 w5 w6

a(w1)b(w1) a(w2)b(w2) a(w3)b(w3) a(w4)b(w4) a(w5)b(w5) a(w6)b(w6)
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Benchmark graphs
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These benchmarks are asymmetric graphs (rigid).
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Graph asymmetry

A graph G is called asymmetric (or rigid) if it does not have a

non-trivial automorphism (i.e., |Aut(G)| = 1).
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Graph asymmetry

A graph G is called asymmetric (or rigid) if it does not have a

non-trivial automorphism (i.e., |Aut(G)| = 1).

Example:

Graph asymmetry denoted GA is the algorithmic task to decide

whether a given graph is asymmetric.

(Many authors call this the graph automorphism problem.)
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Absence of symmetry
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Absence of symmetry

Thm. exactly 18 minimal asymmetric graphs

Nešetřil Conjecture [S., Schweitzer] (2017+)
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Asymmetry vs isomorphism

GI col-GI Aut(G) |Aut(G)|
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Asymmetry vs isomorphism

GI col-GI Aut(G) |Aut(G)|

GA GIAsym

Open question:

Is it harder to find all symmetries than to detect asymmetry?
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Asymmetry vs isomorphism

GI col-GI Aut(G) |Aut(G)|

?

GA GIAsym

Open question:

Is it harder to find all symmetries than to detect asymmetry?
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Tournaments

A tournament is an oriented complete graph.

(exactly one directed edge between every pair of vertices)
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Tournaments

A tournament is an oriented complete graph.

(exactly one directed edge between every pair of vertices)

User:Nojhan/Wikimedia
Commons/CC-BY-SA-3.0
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Symmetry problems for tournaments

GITour col-GITour Aut(T ) |Aut(T )|
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Removing colors for tournaments

- colored tournament isomorphism tournament isomorphism

col-GITour ≤p
m GITour

[Arvind, Das, Mukhopadhyay] (2010)
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Removing colors for tournaments

- colored tournament isomorphism tournament isomorphism

col-GITour ≤p
m GITour

[Arvind, Das, Mukhopadhyay] (2010)

- colored tournament asymmetry tournament asymmetry

col-GATour ≤p
m GATour
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Alternative to disjoint union for tournaments

For tournaments we cannot form the disjoint union.

Instead we form the triangle tournament Tri(T1,T2).
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Alternative to disjoint union for tournaments

For tournaments we cannot form the disjoint union.

Instead we form the triangle tournament Tri(T1,T2).

T1

T2

T ′

1 T1
∼= T ′

1

|Aut(Tri(T1,T2))| =
{

3 · |Aut(T1)|2 · |Aut(T2)| if T1
∼= T2

|Aut(T1)|2 · |Aut(T2)| otherwise.
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Asymmetry vs isomorphism for tournaments

GITour col-GITour Aut(T ) |Aut(T )|
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GITour col-GITour Aut(T ) |Aut(T )|

?

GATour GIAsymTour

Open question:

Is it harder to find all symmetries than to detect asymmetry?
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Asymmetry vs isomorphism for tournaments

GITour col-GITour Aut(T ) |Aut(T )|

ra
n

d
o

m
iz

e
d

GATour GIAsymTour

Open question:

Is it harder to find all symmetries than to detect asymmetry?
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Main Result

Theorem

There is a polynomial-time randomized reduction from

tournament isomorphism to tournament asymmetry.

Thus:

For tournaments finding all symmetries and detecting

asymmetry are polynomially equivalent.
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Sampling automorphisms

Technique 1:

asymmetry test non-trivial automorphism sampler
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Sampling automorphisms

Technique 1:

asymmetry test non-trivial automorphism sampler

Strategy

- fix more and more vertices until graph is asymmetric

- make a copy of the graph

- undo last fixing in copy

- find alternative vertex to the vertex fixed last

- find isomorphism from original to copy
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How to get automorphisms — Illustration

Automorphisms:
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How to get automorphisms — Illustration

Automorphisms: ϕ1
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How to get automorphisms — Illustration

Automorphisms: ϕ1
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How to get automorphisms — Illustration

Automorphisms: ϕ1, ϕ2
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How to get automorphisms — Illustration

Automorphisms: ϕ1, ϕ2, ϕ3
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How to get automorphisms — Illustration

Automorphisms: ϕ1, ϕ2, ϕ3, . . .
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Sampling sets

A set of automorphisms M ′ ⊆ Aut(G) is invariant if M ′ϕ = M ′ for

all ϕ ∈ Aut(G).
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all ϕ ∈ Aut(G). Only invariant sets of automorphisms are useful.

Technique 2: sampling invariant subsets

There is a technique to extract invariant subsets with high

probability. (Sample often and apply Chernoff bounds.)
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A set of automorphisms M ′ ⊆ Aut(G) is invariant if M ′ϕ = M ′ for

all ϕ ∈ Aut(G). Only invariant sets of automorphisms are useful.

Technique 2: sampling invariant subsets

There is a technique to extract invariant subsets with high

probability. (Sample often and apply Chernoff bounds.)

But: The number of samples required is polynomial in |Aut(G)|,
which may be exponential in |G|.
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Sampling sets

A set of automorphisms M ′ ⊆ Aut(G) is invariant if M ′ϕ = M ′ for

all ϕ ∈ Aut(G). Only invariant sets of automorphisms are useful.

Technique 2: sampling invariant subsets

There is a technique to extract invariant subsets with high

probability. (Sample often and apply Chernoff bounds.)

But: The number of samples required is polynomial in |Aut(G)|,
which may be exponential in |G|.
However, we can sample pairs of vertices lying in a common

orbit. There are less than n2 such pairs.
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invariant suborbits

We call a partition π = {C1, . . . ,Ct} of the vertices a partition

into invariant suborbits if

every Ci is contained in an orbit

π is invariant under Aut(G) (i.e., πϕ = π for all ϕ ∈ Aut(G))
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Invariant suborbits — Illustration

Examples of invariant suborbits
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Invariant suborbits — Illustration

Examples of invariant suborbits
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Finding invariant suborbits

Lemma

Given an invariant sampler we can compute in polynomial time

invariant suborbits (with high probability).

Proof technique:

- repeatedly sample ϕ ∈ Aut(G) and randomly pick pair

(x ,ϕ(x)) with x ∈ V (G)

- extract characteristic set of pairs

- compute the transitive closure of the relation induced by pairs
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Computing with solvable groups

Theorem (Luks (1982))

For a solvable permutation group Γ on V and a graph G on

vertex set V we can compute Γ ∩ Aut(G) in polynomial time.

Facts:

Tournaments have solvable automorphism group.

Wreath products of solvable groups are solvable.
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The quotient tournament

T : a tournament; π = {C1, . . . ,Ct} : a partition of the vertices
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The quotient tournament

T : a tournament; π = {C1, . . . ,Ct} : a partition of the vertices

The quotient tournament T/π has the vertex set {C1, . . . ,Ct}.

The direction of the edge between Ci and Ck is the majority

direction between Ci and Ck in T .
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The quotient tournament

T : a tournament; π = {C1, . . . ,Ct} : a partition of the vertices

The quotient tournament T/π has the vertex set {C1, . . . ,Ct}.

The direction of the edge between Ci and Ck is the majority

direction between Ci and Ck in T .

 

Note: if all Ci have odd size this operation is well defined.

Graph isomorphism and asymmetric graphs Pascal Schweitzer 34 / 38



Basic Strategy

Technique 3: invariant suborbits automorphism group
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Basic Strategy

Technique 3: invariant suborbits automorphism group

Input: A tournament T ; invariant suborbit oracle

compute a partition π = {C1, . . . ,Ct} into invariant suborbits

For simplicity assume all induced subtournaments T [Ci ] are

isomorphic.
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Technique 3: invariant suborbits automorphism group

Input: A tournament T ; invariant suborbit oracle

compute a partition π = {C1, . . . ,Ct} into invariant suborbits

For simplicity assume all induced subtournaments T [Ci ] are

isomorphic.

compute T/π (quotient tournament)

compute ∆ := Aut(T/π)
compute Θ := Aut(T [C1])
compute Γ := Θ ≀∆ (wreath product)

compute Γ ∩ Aut(T )

Output: Aut(T ) = Γ ∩ Aut(T )

A more careful case distinction and some running time analysis

show that the overall process runs in polynomial time.
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Summary

Theorem

There is a polynomial-time randomized reduction from

tournament isomorphism to tournament asymmetry.
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Summary

Theorem

There is a polynomial-time randomized reduction from

tournament isomorphism to tournament asymmetry.

Open: How about for graphs? How about for groups?

Related results:

Canonization: With [Arvind, Das, Mukhopadhyay] (2010) we get an

analogous result for canonization.

Hardness: tournament asymmetry is hard for NL, C=L, PL, DET, and

MODkL under AC0 reductions. [Wager] (2007)
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Cumulative Prize Money

Prize for a proof that GI ∈ P or GI /∈ P!
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