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Introduction

We consider simple undirected graphs.

For a graph G = (V , E ),
its order |V | is denoted by n;
its size |E | is denoted by m.
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Introduction

Context: Computer-assisted Discovery in Extremal Graph Theory
Several existing systems: Graph, Graffiti, AutoGraphiX,
GraPHedron, . . .

exploit different ideas to help graph theorists
Objectives of this talk:

presentation of PHOEG, a successor of GraPHedron
use of an illustrative problem (eccentric connectivity index, ECI)

Remark: work under progress
PHOEG is currently a prototype
the problem about ECI is not fully solved
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Eccentric Connectivity Index

Definition
The Eccentric Connectivity Index (ECI) of a graph G , denoted by ξc(G), is

ξc(G) =
∑
v∈V

d(v)ε(v).

Example

a2 | 2
b

3 | 1

c 2 | 2

d
3 | 1

ξc(G) = 2 × (4 + 3) = 14
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Upper bound on ξc for connected graphs with fixed size

Problem
Among connected graphs of order n and size m, what is the maximum
possible value for ξc?

(To avoid infinite eccentricities, we restrict the problem to connected graph)
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Graphs En,m

We define En,m as follows :

The biggest possible clique
without disconnecting the graph,
leaving a path with the
remaining vertices.
Add remaining edges between
vertices of the clique and the
first vertex of the path.

n = 7, m = 14

This graph is unique for given n and m.
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Graphs En,m

For positive integers n and m with n − 1 ≤ m ≤
(n

2
)
, let define

dn,m =
⌊

2n + 1 −
√

17 + 8(m − n)
2

⌋
.

Remarks :
In the following, we simply use d for dn,m;
d is decreasing when m increase (and n fixed);
For En,m, d is its diameter.
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Conjecture of Zhang, Liu and Zhou

Conjecture (Zhang, Liu and Zhou, 2014)
Let G be a connected graph of order n and size m such that d ≥ 3. Then,

ξc(G) ≤ ξc(En,m),

with equality if and only if G ' En,m.

The authors prove that the conjecture is true when
m = n − 1, n, . . . , n + 4 (if n is large enough).
It exists a “proof” published in a journal of University of Isfahan (Iran,
2014) but that is obviously wrong.
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Conjecture of Zhang, Liu and Zhou

Conjecture (Zhang, Liu and Zhou, 2014)
Let G be a connected graph of order n and size m such that d ≥ 3. Then,
ξc(G) ≤ ξc(En,m), with equality iff G ' En,m.

This conjecture leads to several questions:
Is the conjecture true?
If yes, how to prove it?
If no, how to improve or correct it?
What about graphs such that d ≤ 2?
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How the computer can help?

In the following, we will show how PHOEG can help study all of the above
questions and raise new ones.

P Helps Obtaining Extremal Graphs
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Overview of PHOEG

Former system (GraPHedron): graphs and invariant’s values written
sequentially in files;
PHOEG uses a PostgreSQL DB with more than 12 millions of
non-isomorphic graphs (up to order 10) and tables of corresponding
invariants’ values;
Invariant’s values are computed once (useful for NP-hard invariants);
Each graph has its unique signature used as primary key (canonical
form, thanks to Nauty)
This allows complex (and fast) queries on graphs.
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Database query – Points and multiplicities

SELECT P.val AS eci, num_edges.val AS m,
COUNT(*) AS mult

FROM eci P
JOIN num_vertices USING(signature)
JOIN num_edges USING(signature)

WHERE num_vertices.val = 7
GROUP BY m, eci;

eci | m | mult
----+----+------
47 | 8 | 5
46 | 8 | 3
40 | 8 | 3
32 | 7 | 3
48 | 12 | 55
48 | 18 | 1
61 | 14 | 4
59 | 13 | 1
48 | 11 | 17
43 | 9 | 14
47 | 6 | 1
64 | 10 | 1
59 | 11 | 1
45 | 9 | 7
38 | 6 | 2

[...]
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Database query – Polytope

Main principle:
view graphs as points in the space of invariants;
compute the convex hull of these points (for small values of n).

SELECT ST_AsText(ST_ConvexHull(ST_Collect(ST_Point(eci, m))))
FROM poly;

st_astext
--------------------------------------------------------

POLYGON((18 6,42 21,66 18,68 17,66 11,62 8,54 6,18 6))
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Exploring ξc with PHOEG: polytopes
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Exploring ξc with PHOEG: polytopes
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Exploring ξc with PHOEG: polytopes
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Observations and questions

20 40 60
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Is the conjecture of Zhang,
Liu and Zhou true when
d ≥ 3?
Upper bound when d ≤ 2?
How to explain the grid?
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Database query – adding other information

SELECT num_edges.val AS m,
p.val AS eci, d.val AS d,
diam.val AS diam

FROM eci p
JOIN num_vertices USING(signature)
JOIN num_edges USING(signature)
JOIN d USING(signature)
JOIN diam USING(signature)

WHERE num_vertices.val = 7
ORDER BY diam, d, m, eci;

m | eci | d | diam
---+-----+---+------
21 | 42 | 1 | 1
16 | 46 | 2 | 2
16 | 52 | 2 | 2
16 | 52 | 2 | 2
16 | 52 | 2 | 2
16 | 52 | 2 | 2
16 | 52 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2

[...]
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Coloring points with values of d

20 30 40 50 60 70
5

10

15

20

ξc

m

Polytope for n = 7 with values for d

1

2

3

4

5

6

d

Is the conjecture true for d ≥ 3?
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Database query – Extremal graphs

WITH tmp AS (
SELECT n.val AS n, m.val AS m,

P.signature, P.val AS eci, d.val AS d
rank() OVER (

PARTITION BY n.val, m.val
ORDER BY P.val DESC

) AS pos
FROM num_vertices n
JOIN num_edges m USING(signature)
JOIN d USING(signature)
JOIN eci P USING(signature)
WHERE n.val = 7

)
SELECT signature AS sig, n, m, eci, d
FROM tmp
WHERE pos = 1 AND d >= 3
ORDER BY n, m, d, eci;

sig | n | m | eci | d
------+---+----+-----+----
F@IQO | 7 | 6 | 54 | 6
F@‘J_ | 7 | 7 | 57 | 5
FgCXW | 7 | 8 | 62 | 5
FWCYw | 7 | 9 | 62 | 4
FgCxw | 7 | 10 | 64 | 4
F‘Kyw | 7 | 11 | 66 | 4
F‘Kzw | 7 | 12 | 65 | 3
F‘Lzw | 7 | 13 | 65 | 3
F‘\zw | 7 | 14 | 65 | 3
FJ]|w | 7 | 15 | 65 | 3
FJ\|w | 7 | 15 | 65 | 3

Counter-example to the conjecture: no unicity for extremal graphs
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Counter-example (n = 7 and m = 15)

5 × 2

5 × 2

5 × 2

4 × 3 5 × 2 5 × 2 1 × 3

It is possible to construct counter-examples for any values of n ≥ 6 (with d = 3).
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Coloring points with values of d
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Upper facet of the polytope (n = 7)
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A new upper bound tight when d ≤ 2

Theorem
Let G be a graph of order n and size m. Then,

ξc(G) ≤ n(n − 1)(n − 2) − 2m(n − 3),

with equality if and only if G is the complement of a matching.

Note that the bound is valid for all graphs but can be tight only if

m ≥
(

n
2

)
−
⌊n

2

⌋
,

(and thus d ≤ 2).
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PHOEG – Transproof

Up to this point, we have
a tight upper bound when d ≤ 2;
and counter-examples for the unicity if d = 3.

It is also possible to have an explanation of the grid using PHOEG
(skipped).

Is the conjecture true if d ≥ 4 ? (actually, we believe it is).

If yes, is PHOEG able to help for a proof?

This is the purpose of the Transproof module:
using graph transformations is a common proof technique;
not always easy to find “good” transformations.
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Metagraph of rotations that increase ξc (n = 5 and m = 6)

24 27

20 20 24

Applying only one rotation is thus not sufficient to have a proof.
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Metagraph of transformations

Idea : find an “improving path” from any graph to an extremal graph
Metagraph stored in a graph DB (Neo4j)

for all graphs up to order 9
using 8 simple transformations
→ for n = 9, it makes a metagraph of order 274 668 and size
380 814 904

Useful to reject / find good transformations while searching for a proof
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Concluding remarks

Not only extremal graphs are useful to study extremal properties of an
invariant
Exact approach limited to small graphs (n ≤ 10)
However, dealing with small graphs has already shown to be very useful
and led to numerous results (AutoGraphiX, GraPHedron)
PHOEG is intended to be an ecosystem of useful modules (e.g.,
Forbidden Subgraph Characterization)
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Perspectives

Invariants’ DB allows a form of dynamic programming
Create a simple interface for queries
Allow easy visualization and manipulation of outputs (GUI, PDF, etc.)
Simplify the definitions of transformations
Suggest automatically (a short list of) transformations
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Coloring points with highest diameter
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Can the diameter explain the blue grid? Actually, yes!
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Understanding the grid of blue points
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Suppose D(G) = 2 (light blue points)
For each vertex v, since D(G) = 2, either
ε(v) = 1 or ε(v) = 2

If ε(v) = 1, then v is dominant and
d(v) = n − 1
Let k be the number of dominant vertices of G
The sum of degrees of non dominant vertices is

2m − k(n − 1)

Thus,
ξc(G) = k(n − 1) + 2(2m − k(n − 1)) = 4m − k(n − 1),

that is maximum if k = 0 and, moreover, explain the grid.
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